ON ORTHOGONAL POLYNOMIALS WITH PERTURBED RECURRENCE RELATIONS

被引:65
作者
MARCELLAN, F
DEHESA, JS
RONVEAUX, A
机构
[1] UNIV POLITECN MADRID,ESCUELA TECN SUPER INGN TELECOM,DEPT MATEMAT,E-28006 MADRID,SPAIN
[2] UNIV GRANADA,FAC CIENCIAS,DEPT FIS MODERNA,E-18071 GRANADA,SPAIN
[3] FAC UNIV NOTRE DAME PAIX,B-5000 NAMUR,BELGIUM
关键词
distribution of zeros; Orthogonal polynomials; Stieltjes functions;
D O I
10.1016/0377-0427(90)90028-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Orthogonal polynomials may be fully characterized by the following recurrence relation: Pn(x) = (x - βn-1)Pn-1(x)-γn-1Pn-2(x), with P0(x)=1, P1(x) = x - β0 and γn ≠ 0. Here we study how the structure and the spectrum of these polynomials get modified by a local perturbation in the β and γ parameters of a co-recursive (βk → βk + μ), co-dilated (γk → λγk and co-modified (βk → βk + μ; γk → λγk) nature for an arbitrary (but fixed) kth element (1 ≤ k). Specifically, Stieltjes functions, differential equations and distributions of zeros as well as representations of the new perturbed polynomials in terms of the old unperturbed ones are given. This type of problems is strongly related to the boundary value problems of finite-difference equations and to the quantum mechanical study of physical many-body systems (atoms, molecules, nuclei and solid state systems). © 1990.
引用
收藏
页码:203 / 212
页数:10
相关论文
共 25 条
[1]   SPECTRUM OF A SCHRODINGER OPERATOR ON A LATTICE WITH BROKEN BONDS [J].
AUDIT, P .
PHYSICAL REVIEW B, 1984, 30 (07) :4003-4005
[2]  
Chihara T.S., 1957, P AM MATH SOC, V8, P899
[3]  
Chihara TS., 1978, INTRO ORTHOGONAL POL
[4]  
Dehesa, 1981, J COMPUT APPL MATH, V7, P249, DOI 10.1016/0771-050X(81)90052-8
[5]  
DINI J, 1989, PORT MATH, V0046, P00269
[6]  
Dini J., 1988, THESIS U P M CURIE P
[7]  
Dzoumba J., 1985, THESIS U P M CURIE P
[8]  
GERONIMUS JL, 1977, AM MATH SOC TRANSL, V108, P37
[9]   THE WEIGHT-FUNCTIONS, GENERATING-FUNCTIONS AND MISCELLANEOUS PROPERTIES OF THE SEQUENCES OF ORTHOGONAL POLYNOMIALS OF THE 2ND KIND ASSOCIATED WITH THE JACOBI AND THE GEGENBAUER POLYNOMIALS [J].
GROSJEAN, CC .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1986, 16 (03) :259-307
[10]   NUMERICAL DETERMINATION OF SURFACE-DENSITY OF STATES IN ONE-DIMENSIONAL MODEL CRYSTALS [J].
LAMBIN, P ;
VIGNERON, JP .
PHYSICAL REVIEW B, 1980, 22 (02) :549-556