NON-ORTHOGONAL SEPARABLE COORDINATE SYSTEMS FOR THE FLAT 4-SPACE HELMHOLTZ EQUATION

被引:12
作者
KALNINS, EG [1 ]
MILLER, W [1 ]
机构
[1] UNIV MINNESOTA,SCH MATH,MINNEAPOLIS,MN 55455
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1979年 / 12卷 / 08期
关键词
D O I
10.1088/0305-4470/12/8/007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A complete classification of separable non-orthogonal systems for the flat space Helmholtz equation is given. The relation between separability conditions for the various systems and the classification of abelian sub-algebras of the Euclidean symmetry algebra epsilon (4) is explicitly indicated.
引用
收藏
页码:1129 / 1147
页数:19
相关论文
共 10 条
[1]   SEPARABLE COORDINATES FOR 4-DIMENSIONAL RIEMANNIAN SPACES [J].
BOYER, CP ;
KALNINS, EG ;
MILLER, W .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 59 (03) :285-302
[2]   LIE THEORY AND SEPARATION OF VARIABLES .6. EQUATION IUT + DELTA2 U =O [J].
BOYER, CP ;
KALNINS, EG ;
MILLER, W .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (03) :499-511
[3]   EMPTY SPACE-TIMES WITH SEPARABLE HAMILTON-JACOBI EQUATION [J].
COLLINSON, CD ;
FUGERE, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1977, 10 (05) :745-753
[4]  
DIETZ W, 1976, J PHYS A-MATH GEN, V9, P519, DOI 10.1088/0305-4470/9/4/008
[5]  
Eisenhart L. P., 1949, RIEMANNIAN GEOMETRY
[6]   Separable systems of Stackel [J].
Eisenhart, LP .
ANNALS OF MATHEMATICS, 1934, 35 :284-305
[7]   LIE THEORY AND WAVE-EQUATION IN SPACE-TIME .4. KLEIN-GORDON EQUATION AND POINCARE GROUP [J].
KALNINS, EG ;
MILLER, W .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (06) :1233-1246
[8]  
KALNINS EG, UNPUBLISHED
[9]  
Miller W., 1977, SYMMETRY SEPARATION
[10]   KILLING TENSORS AND SEPARATION OF HAMILTON-JACOBI EQUATION [J].
WOODHOUSE, NMJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 44 (01) :9-38