COMPACT EXTENDED ALGORITHMS FOR ELLIPTIC INTEGRALS IN ELECTROMAGNETIC-FIELD AND POTENTIAL COMPUTATIONS .1. ELLIPTIC INTEGRALS OF THE 1ST AND 2ND KIND WITH EXTENDED INTEGRATION RANGE

被引:5
作者
URANKAR, L
HENNINGER, P
机构
[1] Research Laboratories, Siemens AG
关键词
D O I
10.1109/20.105059
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Electromagnetic field and potential computations on elements with curved contours in boundary and volume integral methods (BEM, VIM) require evaluation of a number of Jacobian complete and/or incomplete elliptic integrals of all three kinds for the same modulus but different angles, depending upon the arc length and the angle coordinate of the field point. Up to now, they have been evaluated individually, repeating the same algorithms a number of times. To reduce such redundant computations, a new compact algorithm based on modified Landen transformation is developed for elliptic integrals with an extended integration range -pi less-than-or-equal-to alpha-i less-than-or-equal-to pi. Computational accuracy and time saving are discussed.
引用
收藏
页码:4338 / 4342
页数:5
相关论文
共 8 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS
[2]   AN EXTENSION OF BARTKY-TRANSFORMATION TO INCOMPLETE ELLIPTIC INTEGRALS OF THIRD KIND [J].
BULIRSCH, R .
NUMERISCHE MATHEMATIK, 1969, 13 (03) :266-&
[3]  
Bulirsch R., 1965, NUMER MATH, V7, P78, DOI DOI 10.1007/BF01397975
[4]  
BYRD PF, 1979, HDB ELLIPTIC INGRALS
[5]  
Hofsommer DJ., 1963, NUMER MATH, V5, P291
[6]  
KING LV, 1924, DIRECT NUMERICAL CLA
[7]   COMMON COMPACT ANALYTICAL FORMULAS FOR COMPUTATION OF GEOMETRY INTEGRALS ON A BASIC CONIC SUBDOMAIN IN BOUNDARY AND VOLUME INTEGRAL METHODS [J].
URANKAR, L .
ARCHIV FUR ELEKTROTECHNIK, 1990, 73 (02) :97-107