CALCULATION OF THE IMPULSE-RESPONSE OF A RIGID SPHERE USING THE PHYSICAL OPTIC METHOD AND MODAL METHOD JOINTLY

被引:8
作者
SUN, ZG
GIMENEZ, G
VRAY, D
DENIS, F
机构
[1] Laboratoire “Traitement du Signal et Ultrasons, URA CNRS 1216, INSA, Bât. 502
关键词
D O I
10.1121/1.400516
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper a practical method is proposed to calculate the acoustical response of a rigid sphere. This method combines the physical optic method, which gives good results at high frequencies, with the modal method, which is suitable at low frequencies. This gets around The problems that arise when only one of these methods is used, namely the failure of the physical optic method at low frequencies and the convergence difficulties of the modal method at high frequencies. Here, the impulse response (response to a Dirac pressure transmission) of a rigid sphere for a backscattering situation is calculated.
引用
收藏
页码:10 / 18
页数:9
相关论文
共 18 条
[1]  
Auphan M., 1987, Diffusion acoustique par des cibles elastiques de forme geometrique simple. Theories et experiences (Acoustic scattering from targets of simple geometrical shape. Theories and experiments), P457
[2]  
Bowman J. J., 1969, ELECTROMAGNETIC ACOU
[3]  
BOWMAN JJ, 1969, ELECTROMAGNETIC ACOU, P29
[4]  
Clay C. S., 1977, ACOUSTICAL OCEANOGRA, P502
[5]  
Derem A., 1987, Diffusion acoustique par des cibles elastiques de forme geometrique simple. Theories et experiences (Acoustic scattering from targets of simple geometrical shape. Theories and experiments), P189
[6]   SOUND SCATTERING BY SOLID CYLINDERS AND SPHERES [J].
FARAN, JJ .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1951, 23 (04) :405-418
[7]  
JEFFREYS H, 1956, MATH PHYSICS, P659
[8]  
JESSEL M, 1973, ACOUSTIQUE THEORIQUE, P55
[9]  
MAHE H, 1989, THESIS I NATIONAL SC
[10]  
MORSE PM, 1968, THEORETICAL ACOUSTIC, P339