STABILITY FOR A MULTIDIMENSIONAL INVERSE SPECTRAL THEOREM

被引:40
作者
ALESSANDRINI, G [1 ]
SYLVESTER, J [1 ]
机构
[1] UNIV WASHINGTON,DEPT MATH,GN50,SEATTLE,WA 98195
关键词
D O I
10.1080/03605309908820705
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the eigenvalue problem [formula ommitted] where Ω is a bounded domain in IRd(d ≥ 2) with smooth boundary, and q is a bounded, measurable function on Ω. The eigenvalue problem has discrete spectrum: we denote by {λj}∞j=1 and {ϕj}∞j=1 a nondecreasing sequence of eigenvalues and corresponding (orthonormal) eigenfunctions. It is known ([N-S-U]) that knowledge of the eigenvalues {λj}∞j=1 and the boundary values of the normal derivatives of the corresponding eigenfuntions,[formula ommitted] is sufficient to uniquely determine a C∞(Ω) coefficient, q. © 1990, Taylor & Francis Group, LLC. All rights reserved.
引用
收藏
页码:711 / 736
页数:26
相关论文
共 7 条
[1]  
Alessandrini G, 1988, APPL ANAL, V27, P153, DOI [10.1080/00036818808839730, DOI 10.1080/00036818808839730]
[2]  
COURANT R, 1953, METHODS MATH PHYSICS, V1
[3]  
Gilbarg D., 1983, ELLIPTIC PARTIAL DIF
[4]   MATHEMATICAL PROBLEMS OF COMPUTERIZED-TOMOGRAPHY [J].
LOUIS, AK ;
NATTERER, F .
PROCEEDINGS OF THE IEEE, 1983, 71 (03) :379-389
[5]  
NACHMAN A, 1988, COMMUN MATH PHYS, V115, P525
[6]  
RAKESH WS, 1988, COMMUN PART DIFF EQ, V13, P87
[7]  
SUN Z, IN PRESS J MATH ANAL