LOT-SIZING POLYHEDRA WITH A CARDINALITY CONSTRAINT

被引:5
作者
AGHEZZAF, EH
WOLSEY, LA
机构
[1] CORE, Université Catholique de Louvain, Louvain-la-Neuve
关键词
INTEGRAL POLYHEDRA; CARDINALITY CONSTRAINT; LOT-SIZING;
D O I
10.1016/0167-6377(92)90056-9
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Given a family of mixed 0-1 polyhedra, we suppose that the convex hull of solutions is known. Now we add a cardinality constraint such that the sum of the 0-1 variables is exactly k. When is the resulting polyhedron integral, or when does the resulting linear program have an integral optimal solution for all values of k? Various equivalent conditions are given, and it is shown that uncapacitated lot-sizing polyhedra have this property when the production costs are nonincreasing over time.
引用
收藏
页码:13 / 18
页数:6
相关论文
共 10 条
[1]  
BARANY I, 1984, MATH PROGRAM STUD, V22, P32, DOI 10.1007/BFb0121006
[2]   SOLVING MULTI-ITEM CAPACITATED LOT-SIZING PROBLEMS USING VARIABLE REDEFINITION [J].
EPPEN, GD ;
MARTIN, RK .
OPERATIONS RESEARCH, 1987, 35 (06) :832-848
[3]  
GAMBLE AB, 1989, MATH PROGRAM, V45, P45
[4]  
Geoffrion A.M., 1974, MATH PROGRAMMING STU, P82, DOI DOI 10.1007/BFB0120686
[5]  
Lawler E. L., 1976, COMBINATORIAL OPTIMI
[6]  
Nemhauser G. L., 1988, INTEGER COMBINATORIA
[7]  
VANHOESEL S, 1990, COMMUNICATION
[8]   DYNAMIC VERSION OF THE ECONOMIC LOT SIZE MODEL [J].
WAGNER, HM ;
WHITIN, TM .
MANAGEMENT SCIENCE, 1958, 5 (01) :89-96
[9]  
WARD JE, 1987, CC87829 PURD U I INT
[10]   EFFICIENT ALGORITHM FOR MINIMUM K-COVERS IN WEIGHTED GRAPHS [J].
WHITE, LJ ;
GILLENSON, ML .
MATHEMATICAL PROGRAMMING, 1975, 8 (01) :20-42