HEMATOPOIETIC-CELL RENEWAL IN RADIATION-FIELDS

被引:6
作者
FLIEDNER, TM [1 ]
NOTHDURFT, W [1 ]
TIBKEN, B [1 ]
HOFER, E [1 ]
WEISS, M [1 ]
KINDLER, H [1 ]
机构
[1] UNIV ULM, DEPT MEASUREMENT CONTROL & MICROTECHNOL, W-7900 ULM, GERMANY
来源
LIFE SCIENCES AND SPACE RESEARCH XXV(2): RADIATION BIOLOGY | 1994年 / 14卷 / 10期
关键词
D O I
10.1016/0273-1177(94)90509-6
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Space flight activities are inevitably associated with a chronic exposure of astronauts to a complex mixture of ionising radiation. Although no acute radiation consequences are to be expected as a rule, the possibility of Solar Particle Events (SPE) associated with relatively high doses of radiation (1 or more Gray) cannot be excluded. It is the responsibility of physicians in charge of the health of astronauts to evaluate before, during and after space flight activities the functional status of haemopoietic cell renewal. Chronic low level exposure of dogs indicate that daily gamma-exposure doses below about 2 cGy are tolerated for several years as far as blood cell concentrations are concerned. However, the stem cell pool may be severely affected. The maintenance of sufficient blood cell counts is possible only through increased cell production to compensate for the radiation inflicted excess cell loss. This behaviour of haemopoietic cell renewal during chronic low level exposure can be simulated by bioengineering models of granulocytopoiesis. It is possible to define a ''turbulence region'' for cell loss rates, below which an prolonged adaptation to increased radiation fields can be expected to be tolerated. On the basis of these experimental results, it is recommended to develop new biological indicators to monitor haemopoietic cell renewal at the level of the stem cell pool using blood stem cells in addition to the determination of cytokine concentrations in the serum (and other novel approaches). To prepare for unexpected haemopoietic effects during prolonged space missions, research should be increased to modify the radiation sensitivity of haemopoietic stem cells (for instance by the application of certain regulatory molecules). In addition, a ''blood stem cell bank'' might be established for the autologous storage of stem cells and for use in space activities keeping them in a radiation protected container.
引用
收藏
页码:541 / 554
页数:14
相关论文
共 55 条
[1]  
Anderson R E, 1976, Adv Immunol, V24, P215, DOI 10.1016/S0065-2776(08)60331-4
[2]  
ANDERSON RE, 1983, CYTOTOXIC INSULT TIS, P67
[3]  
BLAZAR BR, 1988, BEHRING I MITT, V83, P170
[4]   INNERVATION OF BONE MARROW IN LABORATORY ANIMALS [J].
CALVO, W .
AMERICAN JOURNAL OF ANATOMY, 1968, 123 (02) :315-&
[5]  
CONKLIN JJ, 1987, ADV RADIAT BIOL, V13, P215
[6]  
CRONKITE E, UNPUB
[7]   UNTERSUCHUNGEN UBER DIE GEFASSARCHITEKTONIK DES KNOCHENMARKES DER RATTE [J].
FLIEDNER, T ;
SANDKUHLER, S ;
STODTMEISTER, R .
ZEITSCHRIFT FUR ZELLFORSCHUNG UND MIKROSKOPISCHE ANATOMIE, 1956, 45 (03) :328-338
[8]   CRYOPRESERVATION OF BLOOD MONONUCLEAR LEUKOCYTES AND STEM-CELLS SUSPENDED IN A LARGE FLUID VOLUME - PRECLINICAL MODEL FOR A BLOOD STEM-CELL BANK [J].
FLIEDNER, TM ;
KORBLING, M ;
CALVO, W ;
BRUCH, C ;
HERBST, E .
BLUT, 1977, 35 (03) :195-202
[9]  
FLIEDNER TM, 1990, VERH DEUT G, V74, P1
[10]  
FLIEDNER TM, 1979, BLOOD CELLS, V5, P313