SL(Q)(2) REALIZATIONS FOR KEPLER AND OSCILLATOR POTENTIALS AND Q-CANONICAL TRANSFORMATIONS

被引:14
作者
DAYI, OF [1 ]
DURU, IH [1 ]
机构
[1] TRAKYA UNIV,DEPT MATH,EDIRNE,TURKEY
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1995年 / 28卷 / 08期
关键词
D O I
10.1088/0305-4470/28/8/029
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The realizations of the Lie algebra corresponding to the dynamical symmetry group SO(2, 1) of the Kepler and oscillator potentials are q-deformed. The q-canonical transformation connecting two realizations is given and a general definition for the q-canonical transformation is deduced. A q-Schrodinger equation for a Kepler-like potential is obtained from the q-oscillator Schrodinger equation. The energy spectrum and the ground-state wavefunction are calculated.
引用
收藏
页码:2395 / 2402
页数:8
相关论文
共 26 条
[1]  
Drienfeld V, Sov. Math.-Dokl., 32, (1985)
[2]  
Jimbo M, Lett. Math. Phys., 10, 1, (1986)
[3]  
Woronowicz S, Twisted {${\rm SU}(2)$} group. An example of a noncommutative differential calculus, Publications of the Research Institute for Mathematical Sciences, 23, 1, (1987)
[4]  
Manin, Ann. Inst. Fourier, 37, 3, (1987)
[5]  
Faddeev L, Reshetikhin N, Takhtajan LA, Algebra Anal., 1, (1989)
[6]  
Arik M, Coon DD, Hilbert spaces of analytic functions and generalized coherent states, Journal of Mathematical Physics, 17, 4, (1976)
[7]  
Biedenharn LC, J. Phys. A: Math. Gen., 22, 18, (1989)
[8]  
Macfarlane AJ, J. Phys. A: Math. Gen., 22, 21, (1989)
[9]  
Bonatsos D, Daskaloyannis C, Kokkotas K, J. Phys. A: Math. Gen., 24, 15, (1991)
[10]  
Bonatos D, Dakaloyannis, General deformation schemes and N = 2 supersymmetric quantum mechanics, Physics Letters B, 307 B, 1-2, (1993)