SEQUENCE SPECIFIC THERMAL-STABILITY OF THE COLLAGEN TRIPLE HELIX

被引:78
作者
BACHINGER, HP [1 ]
DAVIS, JM [1 ]
机构
[1] OREGON HLTH SCI UNIV,DEPT BIOCHEM & MOLEC BIOL,PORTLAND,OR 97201
关键词
COLLAGEN; THERMAL STABILITY; AMINO ACID SEQUENCE; CONFORMATION;
D O I
10.1016/0141-8130(91)90040-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Theoretical calculations of the thermal stability of collagen triple helices using empirical values for the contribution of individual tripeptide units are presented and compared with direct measurements of the thermal stability of various types of collagens. Relative stabilities are assigned to the positions of the tripeptide units in the amino acid sequence along the length of the collagen molecule. The sequence specific relative stabilities of type I and type XI collagens are compared. These offer insight into the reasons for the existence of unfolding intermediates in type XI collagen that are absent in type I collagen. The pattern of relative stabilities calculated for mouse type IV collagen is consistent with experimental results which indicate that the amino terminal region is very stable and that the interruptions cause increased flexibility and independently unfolding domains. Mutations in the triple helical domain of human type I procollagen occurring in brittle bone disease (osteogenesis imperfecta) show varying effects on the thermal stability of the molecule. The sequence specific thermal stability calculations shed some light on why some mutations of cysteine for glycine have greater effects on the thermal stability than others.
引用
收藏
页码:152 / 156
页数:5
相关论文
共 36 条
[1]  
BACHINGER HP, 1989, CYTOSKELETAL EXTRACE, V3, P171
[2]  
BACHINGER HP, 1990, IN PRESS MATRIX, V10
[3]   STRUCTURE OF CDNA CLONES CODING FOR HUMAN TYPE-II PROCOLLAGEN - THE ALPHA-1(II) CHAIN IS MORE SIMILAR TO THE ALPHA-1(I) CHAIN THAN 2 OTHER ALPHA-CHAINS OF FIBRILLAR COLLAGENS [J].
BALDWIN, CT ;
REGINATO, AM ;
SMITH, C ;
JIMENEZ, SA ;
PROCKOP, DJ .
BIOCHEMICAL JOURNAL, 1989, 262 (02) :521-528
[4]  
BERNARD M, 1988, J BIOL CHEM, V263, P17159
[5]   THE NATIVE AND DENATURED STATES OF SOLUBLE COLLAGEN [J].
BOEDTKER, H ;
DOTY, P .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1956, 78 (17) :4267-4280
[6]  
BONADIO J, 1985, J BIOL CHEM, V260, P1734
[7]   PROTEOLYTIC-ENZYMES AS PROBES FOR THE TRIPLE-HELICAL CONFORMATION OF PROCOLLAGEN [J].
BRUCKNER, P ;
PROCKOP, DJ .
ANALYTICAL BIOCHEMISTRY, 1981, 110 (02) :360-368
[8]   3 CONFORMATIONALLY DISTINCT DOMAINS IN AMINO-TERMINAL SEGMENT OF TYPE-III PROCOLLAGEN AND ITS RAPID TRIPLE HELIX REVERSIBLE COIL TRANSITION [J].
BRUCKNER, P ;
BACHINGER, HP ;
TIMPL, R ;
ENGEL, J .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1978, 90 (03) :595-603
[9]   HYDROXYPROLINE CONTENT AND LOCATION IN RELATION TO COLLAGEN THERMAL-STABILITY [J].
BURJANADZE, TV .
BIOPOLYMERS, 1979, 18 (04) :931-938
[10]  
BYERS PH, 1990, IN PRESS TRENDS GENE