PERIOD-DOUBLING REVERSALS AND CHAOS IN SIMPLE ECOLOGICAL MODELS

被引:182
作者
STONE, L
机构
[1] Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Tel Aviv
关键词
D O I
10.1038/365617a0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The period-doubling route to chaos is a well known feature of a range of simple, nonlinear difference equations routinely used in modelling biological populations. It is not generally understood, however, that the process may easily break down and suddenly reverse, giving rise to distinctive period-halving bifurcations. These reversals may act to control, and possibly prevent, the onset of chaos.
引用
收藏
页码:617 / 620
页数:4
相关论文
共 42 条
[1]   CHAOS FROM LINEAR FREQUENCY-DEPENDENT SELECTION [J].
ALTENBERG, L .
AMERICAN NATURALIST, 1991, 138 (01) :51-68
[2]  
[Anonymous], 1930, ANIMAL ECOLOGY EVOLU
[3]   THE DESCRIPTIVE PROPERTIES OF SOME MODELS FOR DENSITY DEPENDENCE [J].
BELLOWS, TS .
JOURNAL OF ANIMAL ECOLOGY, 1981, 50 (01) :139-156
[4]   INTUITION AND THE LOGISTIC EQUATION [J].
BERRYMAN, AA .
TRENDS IN ECOLOGY & EVOLUTION, 1992, 7 (09) :316-316
[5]   SHIFT-MAXIMAL SEQUENCES IN FUNCTION ITERATION - EXISTENCE, UNIQUENESS, AND MULTIPLICITY [J].
BEYER, WA ;
MAULDIN, RD ;
STEIN, PR .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 115 (02) :305-362
[6]   REMERGING FEIGENBAUM TREES IN DYNAMICAL-SYSTEMS [J].
BIER, M ;
BOUNTIS, TC .
PHYSICS LETTERS A, 1984, 104 (05) :239-244
[7]  
BLEAIR J, 1983, PHYS LETT A, V127, P113
[8]   MULTIPLICITY IN A CHEMICAL-REACTION WITH ONE-DIMENSIONAL DYNAMICS [J].
COFFMAN, K ;
MCCORMICK, WD ;
SWINNEY, HL .
PHYSICAL REVIEW LETTERS, 1986, 56 (10) :999-1002
[9]  
Collet P., 1980, ITERATED MAPS INTERV
[10]   INVERSE FEIGENBAUM BIFURCATIONS IN HAMILTONIAN-SYSTEMS [J].
CONTOPOULOS, G .
LETTERE AL NUOVO CIMENTO, 1983, 37 (04) :149-155