Previous studies have demonstrated that reactive oxygen species are involved in ischemic injury. The present work was undertaken to determine in vivo the role of xanthine oxidase in the oxygen free radical production during rat liver ischemia and to examine the activity of antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) during the same period. Our results indicate a 4-fold increase in xanthine oxidase activity between 2 and 3 hours of normothermic ischemia, in parallel with a decrease in cell viability. Moderate hypothermia delays both events. Under the same conditions, the activity of oxygen radical scavenging enzymes remains unchanged. Moreover, we have compared in vitro the susceptibility of isolated liver cells to an oxidative stress induced by O-2(-), H2O2 and (OH)-O-.. Our results reveal that endothelial cells are much more susceptible to reactive oxygen species than hepatocytes, probably because they lack H2O2-detoxifying enzymes. These findings suggest that xanthine oxidase might play a major role in the ischemic injury mainly at the level of the sinusoidal space where most endothelial cells are located.