TWISTED CLASSICAL POINCARE ALGEBRAS

被引:47
作者
LUKIERSKI, J [1 ]
RUEGG, H [1 ]
TOLSTOY, VN [1 ]
NOWICKI, A [1 ]
机构
[1] UNIV BONN,INST PHYS,D-53115 BONN,GERMANY
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1994年 / 27卷 / 07期
关键词
D O I
10.1088/0305-4470/27/7/018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the twisting of the Hopf structure for the classical enveloping algebra U(g), where g is an inhomogeneous rotation algebra, with explicit formulae given for the D = 4 Poincare algebra (g = P4). The comultiplications of twisted U(F)(P4) are obtained by conjugating the primitive classical coproducts by F is-an-element-of U(c) X U(c), where c denotes any Abelian subalgebra of P4, and the universal R-matrices for U(F)(P4) are triangular. As an example we show that the quantum deformation of the Poincare algebra recently proposed by Chaichain and Demiczev is a twisted classical Poincare algebra. The interpretation of the twisted Poincare algebra as describing relativistic symmetries with clustered two-particle states is proposed.
引用
收藏
页码:2389 / 2399
页数:11
相关论文
共 24 条
[1]   QUANTUM POINCARE GROUP [J].
CHAICHIAN, M ;
DEMICHEV, AP .
PHYSICS LETTERS B, 1993, 304 (3-4) :220-224
[2]  
CHAICHIAN M, 1993, HUTFT9324 HELS U PRE
[3]  
DEAZCARAGA JA, 1993, HEPTH9309036 PREPR
[4]  
Drinfeld V.G., 1989, LENINGR MATH J, V1, p114?148
[5]  
Drinfeld V.G., 1986, P INT C MATH, V1, P789
[6]   RATIONAL FORMS FOR TWISTINGS OF ENVELOPING-ALGEBRAS OF SIMPLE LIE-ALGEBRAS [J].
ENRIQUEZ, B .
LETTERS IN MATHEMATICAL PHYSICS, 1992, 25 (02) :111-120
[7]  
Faddeev L.D., 1989, ALGEBRA ANALIZ, P178
[8]  
GUREVICH G, 1991, DAMTP9149 CAMBR U PR
[9]  
KEMPF A, 1991, LMUTPW914 MUNCH U PR
[10]  
Khoroshkin S., 1991, COMMUN MATH PHYS, V141, P559