ENTROPY OF RANDOM QUANTUM STATES

被引:39
作者
JONES, KRW
机构
[1] Sch. of Phys., Melbourne Univ., Vic.
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1990年 / 23卷 / 23期
关键词
D O I
10.1088/0305-4470/23/23/011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The authors use a simple generating function to calculate exactly the entropy of random quantum states for finite-dimensional Hilbert spaces over real, complex and quaternionic scalars. This allows them to extend their previous formula for the quantum correlation information of a state determination apparatus to include real and quaternionic von Neumann analysers.
引用
收藏
页码:L1247 / L1251
页数:5
相关论文
共 13 条
[1]  
ADLER SL, 1986, QUANTUM FIELD THEORY, V1, P601
[2]   SCALING BEHAVIOR OF LOCALIZATION IN QUANTUM CHAOS [J].
CASATI, G ;
GUARNERI, I ;
IZRAILEV, F ;
SCHARF, R .
PHYSICAL REVIEW LETTERS, 1990, 64 (01) :5-8
[3]  
DAVIES AJ, 1990, UNPUB
[5]   INTERMEDIATE STATISTICS OF THE QUASI-ENERGY SPECTRUM AND QUANTUM LOCALIZATION OF CLASSICAL CHAOS [J].
IZRAILEV, FM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (07) :865-878
[6]  
JAUCH JM, 1968, F QUANTUM MECHANICS
[7]  
JONES KRW, IN PRESS J PHYS A
[8]  
JONES KRW, 1990, UMP9031OZ9011 U MELB
[9]  
JONES KRW, 1990, UMP9032OZ9012 U MELB
[10]   UNIVERSALITY OF EIGENVECTOR STATISTICS OF KICKED TOPS OF DIFFERENT SYMMETRIES [J].
KUS, M ;
MOSTOWSKI, J ;
HAAKE, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (22) :L1073-L1077