RESONANCE TRANSDUCTION OF LOW-LEVEL PERIODIC SIGNALS BY AN ENZYME - AN OSCILLATORY ACTIVATION BARRIER MODEL

被引:30
作者
MARKIN, VS
LIU, DS
ROSENBERG, MD
TSONG, TY
机构
[1] UNIV MINNESOTA, COLL BIOL SCI, DEPT BIOCHEM, ST PAUL, MN 55108 USA
[2] UNIV MINNESOTA, COLL BIOL SCI, DEPT GENET & CELL BIOL, ST PAUL, MN 55108 USA
关键词
D O I
10.1016/S0006-3495(92)81913-6
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The overall rate of an enzyme catalyzed reaction is determined by the activation barrier of a rate-limiting step. If the barrier is oscillatory due to the intrinsic properties of a fluctuating enzyme, this enzymic reaction will be influenced by a low level periodic electric field through the resonance transduction between the applied field and the oscillatory activation barrier. The ATP hydrolysis activity of a highly purified, detergent solubilized Ecto-ATPase from chicken oviduct was used to test the above concept. At 37-degrees-C, this activity (1,800-mu-mol mg-1 min-1) was stimulated up to 47% (to 2,650-mu-mol mg-1 min-1) by an alternating electric field (AC), with a frequency window at 10 kHz. The maximal stimulation occurred at 5.0 V (peak-to-peak) cm-1. The potential drop across the dimension of the enzyme was approximately 10-mu-V (micelle diameter 20 nm). The activation barrier, or the Arrhenius activation energy, of the ATP splitting was measured to be 30 kT and the maximal barrier oscillation was calculated to be approximately 2.5 kT according to the oscillatory activation barrier (OAB) model. With the optimal AC field, full impact of the electric stimulation could be effected in much less than a second. The OAB model is many orders of magnitude more sensitive for deciphering low level periodic signals than the electroconformational coupling (ECC) model, although the latter has the ability to actively transduce energy while the former does not. By the OAB mechanism, the detecting limit of an external electric field by the ATPase, in a cell 20-mu-m in diameter, would be 5 mV cm-1, but could be much lower for other membrane enzymes or receptors (e.g., nV cm-1). We propose that mechanisms similar to the OAB model could explain how a weak electromagnetic field or acoustic noises can exert its effects on an organism or a living cell.
引用
收藏
页码:1045 / 1049
页数:5
相关论文
共 31 条
[1]  
ADAIR RK, 1990, IEEE ENG MED BIOL SO, V12, P1559
[2]   CAN FREE-ENERGY BE TRANSDUCED FROM ELECTRIC NOISE [J].
ASTUMIAN, RD ;
CHOCK, PB ;
TSONG, TY ;
CHEN, YD ;
WESTERHOFF, HV .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (02) :434-438
[3]   EFFECTS OF OSCILLATIONS AND ENERGY-DRIVEN FLUCTUATIONS ON THE DYNAMICS OF ENZYME CATALYSIS AND FREE-ENERGY TRANSDUCTION [J].
ASTUMIAN, RD ;
CHOCK, PB ;
TSONG, TY ;
WESTERHOFF, HV .
PHYSICAL REVIEW A, 1989, 39 (12) :6416-6435
[4]  
ASTUMIAN RD, 1992, IN PRESS J CHEM PHYS
[5]   THE MECHANISM OF STOCHASTIC RESONANCE [J].
BENZI, R ;
SUTERA, A ;
VULPIANI, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (11) :L453-L457
[6]  
Bullock TH., 1986, ELECTRORECEPTION
[8]  
De Felice LJ, 1981, INTRO MEMBRANE NOISE
[9]   STOCHASTIC LINKAGE - EFFECT OF RANDOM FLUCTUATIONS ON A 2-STATE PROCESS [J].
DICERA, E .
JOURNAL OF CHEMICAL PHYSICS, 1991, 95 (07) :5082-5086
[10]  
GAVISH B, 1986, FLUCTUATING ENZYME