MURINE TERATOLOGY AND PHARMACOKINETICS OF THE ENANTIOMERS OF SODIUM 2-ETHYLHEXANOATE

被引:14
作者
COLLINS, MD
SCOTT, WJ
MILLER, SJ
EVANS, DA
NAU, H
机构
[1] UNIV CINCINNATI,CHILDRENS HOSP RES FDN,CINCINNATI,OH 45229
[2] UNIV CINCINNATI,DEPT MICROBIOL IMMUNOL,CINCINNATI,OH 45229
[3] HARVARD UNIV,DEPT CHEM,CAMBRIDGE,MA 02138
关键词
D O I
10.1016/0041-008X(92)90195-X
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
A mouse model for the induction of exencephaly with sodium (±)-2-ethylhexanoate has been developed using multiple administration regimes. With three consecutive administrations at one-half-day intervals, the most sensitive time to induce exencephaly was Gestational Days 8-9. Using the racemic substance it was determined that the SWV strain was more sensitive to the induction of exencephaly than the C57BL 6NCrlBR strain. The enantiomers of 2-ethylhexanoic acid were separated via preparative HPLC to greater than 99.8% optical purity, and greater than 99% purity according to a gas chromatographic analysis. It was demonstrated that the (R)-enantiomer is a more potent teratogen than the (S)-enantiomer for the induction of exencephaly as well as malformations of other organ systems. Pharmacokinetic analyses for each of the enantiomers were performed in maternal plasma, maternal muscle, and embryo. The pharmacokinetics showed that the peak concentration (Cmax) for both enantiomers in the three compartments was approximately equivalent and was attained within 15 min following the third administration. The area under the concentration versus time curve values for the two enantiomers were approximately 10% higher for the (R)-antipode because of a slightly slower elimination of this compound. There was negligible (or no) racemization of the two enantiomers in the biological samples. The results suggest that teratologic differences in the enantiomers of sodium 2-ethylhexanoate are not due to differences in the concentrations of these antipodes in the embryo, but more likely result from the specific interaction of the enantiomers with chiral molecules in the embryo. © 1992.
引用
收藏
页码:257 / 265
页数:9
相关论文
共 38 条
[1]   METABOLISM OF DI(2-ETHYLHEXYL)PHTHALATE [J].
ALBRO, PW ;
LAVENHAR, SR .
DRUG METABOLISM REVIEWS, 1989, 21 (01) :13-34
[2]  
BLASCHKE G, 1979, ARZNEIMITTEL-FORSCH, V29-2, P1640
[3]   THE METABOLIC CHIRAL INVERSION AND DISPOSITIONAL ENANTIOSELECTIVITY OF THE 2-ARYLPROPIONIC ACIDS AND THEIR BIOLOGICAL CONSEQUENCES [J].
CALDWELL, J ;
HUTT, AJ ;
FOURNELGIGLEUX, S .
BIOCHEMICAL PHARMACOLOGY, 1988, 37 (01) :105-114
[4]   INDUCTION OF POSTAXIAL FORELIMB ECTRODACTYLY WITH ANTICONVULSANT AGENTS IN A/J MICE [J].
COLLINS, MD ;
FRADKIN, R ;
SCOTT, WJ .
TERATOLOGY, 1990, 41 (01) :61-70
[5]  
COLLINS MD, IN PRESS TERATOLOGY
[6]  
Evans D. A., 1989, ORG SYNTH, V68, P83
[7]   CONTRASTERIC CARBOXIMIDE HYDROLYSIS WITH LITHIUM HYDROPEROXIDE [J].
EVANS, DA ;
BRITTON, TC ;
ELLMAN, JA .
TETRAHEDRON LETTERS, 1987, 28 (49) :6141-6144
[8]   ASYMMETRIC ALKYLATION REACTIONS OF CHIRAL IMIDE ENOLATES - A PRACTICAL APPROACH TO THE ENANTIOSELECTIVE SYNTHESIS OF ALPHA-SUBSTITUTED CARBOXYLIC-ACID DERIVATIVES [J].
EVANS, DA ;
ENNIS, MD ;
MATHRE, DJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1982, 104 (06) :1737-1739
[9]   TOXICITY AND TERATOGENICITY OF OPTICAL ISOMERS OF THALIDOMIDE [J].
FABRO, S ;
SMITH, RL ;
WILLIAMS, RT .
NATURE, 1967, 215 (5098) :296-&
[10]  
Finnell R.H., 1985, P GRNWD GENET CTR, V5, P162