A DATA REDUCTION SCHEME FOR TRIANGULATED SURFACES

被引:168
作者
HAMANN, B [1 ]
机构
[1] MISSISSIPPI STATE UNIV,NSF,ENGN RES CTR COMPUTAT FIELD SIMULAT,MISSISSIPPI STATE,MS 39762
基金
美国国家科学基金会;
关键词
APPROXIMATION; CURVATURE; DATA REDUCTION; SURFACE TRIANGULATION;
D O I
10.1016/0167-8396(94)90032-9
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Given a surface triangulation in three-dimensional space, an algorithm is developed to iteratively remove triangles from the triangulation. An underlying parametric or implicit surface representation is not required. An order is introduced on the set of triangles by considering curvature at their vertices. Triangles in nearly planar surface regions are prime candidates for removal. The degree of reduction can be specified by a percentage or, in the case of bivariate functions, by an error tolerance.
引用
收藏
页码:197 / 214
页数:18
相关论文
共 13 条
[1]  
ARGE E, 1990, ALGORITHMS APPROXIMA, V2, P4
[2]   TRIANGULATION OF SCATTERED DATA IN 3D SPACE [J].
CHOI, BK ;
SHIN, HY ;
YOON, YI ;
LEE, JW .
COMPUTER-AIDED DESIGN, 1988, 20 (05) :239-248
[3]  
Do Carmo M.P., 2016, DIFFERENTIAL GEOMETR
[4]   DATA DEPENDENT TRIANGULATIONS FOR PIECEWISE LINEAR INTERPOLATION [J].
DYN, N ;
LEVIN, D ;
RIPPA, S .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1990, 10 (01) :137-154
[5]  
DYN N, 1990, ALGORITHMS APPROXIMA, V2, P185
[6]  
Farin G, 1992, CURVES SURFACES COMP
[7]  
Hamann B., 1993, GEOMETRIC MODELLING, V8, P139, DOI DOI 10.1007/978-3-7091-6916-2_10
[8]  
HAMANN B, 1993, IN PRESS COMPUTER AI
[9]  
Lawson CL, 1977, MATH SOFTWARE, P161, DOI [DOI 10.1016/B978-0-12-587260-7.50011-X, 10.1016/B978-0-12-587260-7.50011-X]
[10]  
Le Mehaute A. J. Y., 1989, Mathematical Methods in Computer Aided Geometric Design, P419