Universal strange attractors on wrinkled tori

被引:38
作者
Gunaratne, Gemunu H. [1 ]
Jensen, Mogens H. [1 ]
Procaccia, Itamar [1 ,2 ]
机构
[1] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
[2] Weizmann Inst Sci, Dept Chem Phys, IL-76100 Rehovot, Israel
关键词
D O I
10.1088/0951-7715/1/1/006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Strange attractors in dynamical systems that go to chaos via quasiperiodicity are considered. It is shown that there exists an infinite number of points in parameter space where the topology of the strange attractors is universal. At such points the periodic points belonging to unstable periodic orbits can be organised on ternary trees which are pruned by local rules. The grammar is universal, and thus the topological entropy is universal at each of these points in parameter space. The complete understanding of the topology is used to calculate systematically the metric properties of the attractors. The spectrum of scaling indices f(alpha) is computed. It is found that there is no metric universality, although some aspects of the metric properties are universal. Experiments to test some of the predictions of this theory are suggested.
引用
收藏
页码:157 / 180
页数:24
相关论文
共 29 条
[1]   EXPLORING CHAOTIC MOTION THROUGH PERIODIC-ORBITS [J].
AUERBACH, D ;
CVITANOVIC, P ;
ECKMANN, JP ;
GUNARATNE, G ;
PROCACCIA, I .
PHYSICAL REVIEW LETTERS, 1987, 58 (23) :2387-2389
[2]  
AUERBACH D, 1987, PHYS REV A IN PRESS, V58
[3]   TRANSITION TO CHAOS BY INTERACTION OF RESONANCES IN DISSIPATIVE SYSTEMS .2. JOSEPHSON-JUNCTIONS, CHARGE-DENSITY WAVES, AND STANDARD MAPS [J].
BOHR, T ;
BAK, P ;
JENSEN, MH .
PHYSICAL REVIEW A, 1984, 30 (04) :1970-1981
[4]  
COLLET P, 1980, INTERACTED MAPS INTE
[5]  
CVITANOVIC P, 1987, PREPRINT
[6]   FLUCTUATIONS OF DYNAMIC SCALING INDEXES IN NONLINEAR-SYSTEMS [J].
ECKMANN, JP ;
PROCACCIA, I .
PHYSICAL REVIEW A, 1986, 34 (01) :659-661
[7]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656
[8]  
ERIGENBAUM MJ, 1979, STAT PHYS, V21, P669
[9]  
FEIGENBAUM M, 1979, J STATISTICAL PHYSIC, V19, P25
[10]   QUASI-PERIODICITY IN DISSIPATIVE SYSTEMS - A RENORMALIZATION-GROUP ANALYSIS [J].
FEIGENBAUM, MJ ;
KADANOFF, LP ;
SHENKER, SJ .
PHYSICA D, 1982, 5 (2-3) :370-386