PATTERN-CLASSIFICATION BY THE BAYES MACHINE

被引:3
作者
DIAMANTINI, C [1 ]
SPALVIERI, A [1 ]
机构
[1] POLITECN MILAN,DIPARTIMENTO ELETTRON & INFORMAZ,I-20133 MILAN,ITALY
关键词
BAYES METHOD; PATTERN CLASSIFICATION; VECTOR QUANTIZATION;
D O I
10.1049/el:19951412
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The pattern classification one has to test which class an observation vector belongs to, paying the minimum error probability. According to the nonparametric formulation, the statistical information is given by a labelled training set. The authors show how to design a classification rule by optimising the position of code vectors of a labelled vector quantiser under the minimum error probability criterion.
引用
收藏
页码:2086 / 2088
页数:3
相关论文
共 6 条
[1]  
KOHONEN T., BARNA G., CHRISLEY R., Statistical pattern recognition with neural networks: Benchmarking studies, Proc. IEEE Int. Conf. on Neural Networks, 1, pp. 61-68, (1988)
[2]  
KOHONEN T., The self organizing map, Proc. IEEE, 78, 9, pp. 1464-1480, (1990)
[3]  
FUKUNAGA K., Introduction to statistical pattern recognition, (1972)
[4]  
DIAMANTINI C., Quantizzazione vettoriale adattativa con applicazione al riconoscimento statistico di pattern, (1995)
[5]  
VAN TREES H.L., Detection, estimation, and modulation theory, (1971)
[6]  
MCLEAN G.F., Vector quantization for texture classification, IEEE Trans., SMC-23, pp. 637-649, (1993)