COMPUTATIONAL MORPHOLOGY OF CURVES

被引:31
作者
DEFIGUEIREDO, LH
GOMES, JDM
机构
[1] IMPA-Instituto de Matemática Pura e Aplicada, Rio de Janeiro, 22460-030, RJ, Estrada Dona Castorina
关键词
COMPUTATIONAL MORPHOLOGY; CURVE RECONSTRUCTION; MINIMAL SPANNING TREES;
D O I
10.1007/BF01889981
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We prove that euclidean minimal spanning trees correctly reconstruct differentiable arcs from sufficiently dense samples. The proof is based on a combinatorial characterization of minimal spanning paths and on a description of the local geometry of arcs inside tubular neighborhoods. We also present simple heuristics for reconstruting more general curves.
引用
收藏
页码:105 / 112
页数:8
相关论文
共 11 条
[1]  
Arnon D. S., 1983, Computer Graphics, V17, P219, DOI 10.1145/964967.801152
[2]   GEOMETRIC STRUCTURES FOR 3-DIMENSIONAL SHAPE REPRESENTATION [J].
BOISSONNAT, JD .
ACM TRANSACTIONS ON GRAPHICS, 1984, 3 (04) :266-286
[3]  
Duda R. O., 1973, PATTERN CLASSIFICATI, V3
[4]  
FIGUEIREDO LH, 1992, THESIS IMPA RIO DE J
[5]  
Hirsch M.W., 1976, GRADUATE TEXTS MATH, V33
[6]  
HOPPE H, 1992, COMP GRAPH, V26, P71, DOI 10.1145/142920.134011
[7]  
Kirkpatrick David G, 1985, MACHINE INTELLIGENCE
[8]   SHORTEST CONNECTION NETWORKS AND SOME GENERALIZATIONS [J].
PRIM, RC .
BELL SYSTEM TECHNICAL JOURNAL, 1957, 36 (06) :1389-1401
[9]  
TOUSSAINT GT, 1980, 5TH P INT C PATT REC, P1324
[10]  
Veltkamp R. C., 1992, Computational Geometry: Theory and Applications, V1, P227, DOI 10.1016/0925-7721(92)90003-B