COUNTING EXTENSIONS

被引:54
作者
SPENCER, J
机构
[1] Courant Institute, New York, NY 10012
关键词
D O I
10.1016/0097-3165(90)90070-D
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Counts of extensions, such as the number of triangles containing a vertex or the number of paths of length five containing a given two vertices, are examined in a random graph. It is shown, roughly, that when the expected value of the number grows faster than logarithmically then the counts are asympotically equal for all choices of the root points. © 1990.
引用
收藏
页码:247 / 255
页数:9
相关论文
共 4 条
[1]   A USEFUL ELEMENTARY CORRELATION-INEQUALITY [J].
BOPPONA, R ;
SPENCER, J .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1989, 50 (02) :305-307
[2]  
ERDOS P, 1960, MAGYAR TUD AKAD MAT, V5, P17
[3]  
Shelah S., 1988, J AM MATH SOC, V1, P97, DOI 10.1090/S0894-0347-1988-0924703-8
[4]   THRESHOLD FUNCTIONS FOR EXTENSION STATEMENTS [J].
SPENCER, J .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1990, 53 (02) :286-305