ROBUST CONFIDENCE LIMITS

被引:62
作者
HUBER, PJ
机构
[1] Lehrstuhl f. math. Statistik, Eidgen. Techn. Hochschule, Zürich
来源
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE | 1968年 / 10卷 / 04期
关键词
D O I
10.1007/BF00531848
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A location parameter is to be estimated from a sample of fixed size n, assuming that the shape of the true underlying distribution lies anywhere within ε of some given shape, e.g. the normal one. The metric in the space of distribution functions may be defined in various ways: total variation, Kolmogorov or Lévy distance. A minimax solution to this problem is described explicitly; it minimizes the maximum probability that the estimate exceeds, or falls below, the true value of the parameter by more than some fixed amount. © 1968 Springer-Verlag.
引用
收藏
页码:269 / &
相关论文
共 14 条
[1]   TREATMENT OF OUTLIERS IN SAMPLES OF SIZE 3 [J].
ANSCOMBE, FJ ;
BARRON, BA .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION B-MATHEMATICAL SCIENCES, 1966, B 70 (02) :141-+
[2]   ON SOME ROBUST ESTIMATES OF LOCATION [J].
BICKEL, PJ .
ANNALS OF MATHEMATICAL STATISTICS, 1965, 36 (03) :847-858
[4]  
CZUBER E, 1991, THEORIE BEOBACHTUNGS
[5]   THE THEORY OF UNBIASED ESTIMATION [J].
HALMOS, PR .
ANNALS OF MATHEMATICAL STATISTICS, 1946, 17 (01) :34-43
[6]   ROBUST ESTIMATION OF LOCATION PARAMETER [J].
HUBER, PJ .
ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (01) :73-&
[7]   A ROBUST VERSION OF THE PROBABILITY RATIO TEST [J].
HUBER, PJ .
ANNALS OF MATHEMATICAL STATISTICS, 1965, 36 (06) :1753-1758
[8]  
Lehmann EL, 1955, SANKHYA, V15, P219
[9]  
LEHMANN EL, 1959, TESTING STATISTICAL
[10]  
LOCHER H, 1966, THESIS ETH