FINDING VARIABLES THAT WORK

被引:23
作者
SONQUIST, JA [1 ]
机构
[1] UNIV MICHIGAN,INST SOCIAL RES,COMP SERV FACIL,ANN ARBOR,MI
关键词
D O I
10.1086/267669
中图分类号
G2 [信息与知识传播];
学科分类号
05 ; 0503 ;
摘要
This paper outlines a strategy for using two large-scale computer programs, the Automatic Interaction Detection and Multiple Classification Analysis algorithms. They supplement each other in the inductive task of formulating a model of the simultaneous effects of a set of independent variables on a criterion. MCA handles correlated predictors well, but assumes away interactions. Terms representing this type of joint effect are located by preliminary AID runs. © 1969 by Columbia University Press.
引用
收藏
页码:83 / 95
页数:13
相关论文
共 13 条
[1]  
ANDERSON RL, 1952, STATISTICAL THEORY R
[2]  
Andrews F., 1967, MULTIPLE CLASSIFICAT
[3]  
Blalock H.M., 1964, CAUSAL INFERENCE NON
[4]  
EZEKIEL M, 1959, METHODS CORRELATION, P147
[5]  
Horst P, 1954, J CLIN PSYCHOL, V10, P3, DOI 10.1002/1097-4679(195401)10:1<3::AID-JCLP2270100102>3.0.CO
[6]  
2-7
[7]  
HYMAN HH, 1954, SURVEY DESIGN ANALYS, pCH6
[8]   PROBLEMS IN ANALYSIS OF SURVEY DATA, AND A PROPOSAL [J].
MORGAN, JN ;
SONQUIST, JA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1963, 58 (302) :415-&
[9]  
Sewell W. H., 1966, AM SOCIOL REV, V31, P698
[10]  
SONQUIST JA, 1964, 35 U MICH I SOC RES