HIGHER-ORDER NONLINEAR DEGENERATE PARABOLIC EQUATIONS

被引:351
作者
BERNIS, F [1 ]
FRIEDMAN, A [1 ]
机构
[1] UNIV MINNESOTA,INST MATH & ITS APPLICAT,MINNEAPOLIS,MN 55455
关键词
D O I
10.1016/0022-0396(90)90074-Y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with nonlinear degenerate parabolic equations of the form ut + (-1)m - 1 D(f(u) D2m + 1u) = 0 with f(u) ~ |u|n (n ≥ 1) near u = 0 and D = ∂ ∂x. Under appropriate boundary conditions it is shown that there exists a weak solution u. Some of the main results of the paper are that u ≥ 0 if u0 ≥ 0, and that the support of u(·, t) (when u0 ≥ 0) increases with t (for the last property we require that n ≥ 2 and m = 1). © 1990.
引用
收藏
页码:179 / 206
页数:28
相关论文
共 12 条
[1]  
Eidelman S.D., 1969, PARABOLIC SYSTEMS, P469
[2]  
FRIEDMAN A, 1958, J MATH MECH, V7, P393
[3]  
GREENSPAN HP, 1981, STUD APPL MATH, V64, P95
[4]   MOTION OF A SMALL VISCOUS DROPLET THAT WETS A SURFACE [J].
GREENSPAN, HP .
JOURNAL OF FLUID MECHANICS, 1978, 84 (JAN) :125-143
[6]  
KING JR, 1986, THESIS OXFORD U
[7]  
KING JR, IN PRESS SIAM J APPL
[8]  
LACEY AA, 1982, STUD APPL MATH, V67, P217
[9]  
LIONS JL, 1969, QUELQUES METHODES RE
[10]  
SMITH NF, 1988, IMA J APPL MATH, V40, P73