BAYES STATISTICAL BEHAVIOR AND VALID GENERALIZATION OF PATTERN CLASSIFYING NEURAL NETWORKS

被引:31
作者
KANAYA, F
MIYAKE, S
机构
[1] NTT Transmission Syst Lab,, Yokosuka-shi, Kanagawa
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 1991年 / 2卷 / 04期
关键词
D O I
10.1109/72.88169
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This letter demonstrates both theoretically and experimentally that under appropriate conditions a neural network pattern classifier generates the empirical Bayes rule optimal against the empirical distribution of the sample data which are used to train the network. In addition, it is proposed that a Bayes statistical decision approach leads naturally to a probabilistic definition of the valid generalization which a neural network can be expected to generate from a finite training sample.
引用
收藏
页码:471 / 475
页数:5
相关论文
共 10 条
  • [1] What Size Net Gives Valid Generalization?
    Baum, Eric B.
    Haussler, David
    [J]. NEURAL COMPUTATION, 1989, 1 (01) : 151 - 160
  • [2] HAMPSHIRE J, 1990, 1990 P CONN MOD SUMM
  • [3] KANAYA F, 1990, NOV P COGNITIVA90 MA, V1, P13
  • [4] KANAYA F, 1989, IEICE PRU8915 TECH R
  • [5] KOHONEN T, 1988, 2ND P IEEE INT C NEU, V1, P61
  • [6] EXPLORATIONS OF THE MEAN FIELD-THEORY LEARNING ALGORITHM
    PETERSON, C
    HARTMAN, E
    [J]. NEURAL NETWORKS, 1989, 2 (06) : 475 - 494
  • [7] Ruck D W, 1990, IEEE Trans Neural Netw, V1, P296, DOI 10.1109/72.80266
  • [8] WAN EA, 1990, NEURAL NETWORKS IEEE, V1, P303
  • [9] Learning in Artificial Neural Networks: A Statistical Perspective
    White, Halbert
    [J]. NEURAL COMPUTATION, 1989, 1 (04) : 425 - 464
  • [10] [No title captured]