FRACTAL DIMENSIONS AND SINGULARITIES OF THE WEIERSTRASS TYPE FUNCTIONS

被引:61
作者
HU, TY [1 ]
LAU, KS [1 ]
机构
[1] UNIV PITTSBURGH,DEPT MATH & STAT,PITTSBURGH,PA 15260
关键词
ALMOST PERIODIC FUNCTIONS; BOX DIMENSION; HAUSDORFF DIMENSION; KNOT POINTS; NONDIFFERENTIABILITY; WEIERSTRASS TYPE FUNCTIONS;
D O I
10.2307/2154398
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new type of fractal measures K(s), 1 less-than-or-equal-to s less-than-or-equal-to 2, defined on the subsets of the graph of a continuous function is introduced. The K-dimension defined by this measure is 'closer' to the Hausdorff dimension than the other fractal dimensions in recent literatures. For the Weierstrass type functions defined by W(x) = SIGMA0infinity lambda(-alphai) g(lambda(i)x) , where lambda > 1 , 0 < alpha < 1, and g is an almost periodic Lipschitz function of order greater than alpha, it is shown that the K-dimension of the graph of W equals to 2 - alpha, this conclusion is also equivalent to certain rate of the local oscillation of the function. Some problems on the 'knot' points and the nondifferentiability of W are also discussed.
引用
收藏
页码:649 / 665
页数:17
相关论文
共 17 条
[1]  
[Anonymous], 1947, ALMOST PERIODIC FUNC
[2]  
Besicovitch A. S., 1937, J LOND MATH SOC, V12, P18
[3]  
Falconer KJ., 1985, GEOMETRY FRACTAL SET, DOI 10.1017/CBO9780511623738
[4]  
GOFFMAN C, 1972, INDIANA U MATH J, V22, P135, DOI 10.1512/iumj.1972.22.22012
[5]   Weierstrass's non-differentiable function [J].
Hardy, G. H. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1916, 17 :301-325
[6]   SINGULARITIES OF THE WEIERSTRASS TYPE FUNCTIONS [J].
HATA, M .
JOURNAL D ANALYSE MATHEMATIQUE, 1988, 51 :62-90
[7]   THE SUM OF RADEMACHER FUNCTIONS AND HAUSDORFF DIMENSION [J].
HU, TY ;
LAU, KS .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1990, 108 :97-103
[8]  
HU TY, SUM RADEMACHER FUNCT, V2
[9]  
KAHANE JP, 1958, C MATH, V6, P193
[10]  
Kaplan J L, 1984, ERGOD THEOR DYN SYST, V4, P261, DOI 10.1017/S0143385700002431