SPECTRAL APPROXIMATION OF A SCHRODINGER TYPE EQUATION

被引:10
作者
BERNARDI, C
PELISSIER, MC
机构
[1] UNIV TOULON & VAR,ETMA,F-83957 LA GARDE,FRANCE
[2] UNIV PARIS 06,F-75230 PARIS 05,FRANCE
关键词
D O I
10.1142/S0218202594000054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with a linear Schrodinger type equation in a rectangular domain with mixed Dirichlet-Neumann boundary conditions. The well-posedness of the continuous problem is proved, then a discrete problem is defined by combining a Legendre type spectral method in the first direction and a leap-frog scheme in the other one. The numerical analysis of the discretization is performed and error estimates are given. Numerical tests are presented.
引用
收藏
页码:49 / 88
页数:40
相关论文
共 18 条
[1]   HIGHER-ORDER PARAXIAL WAVE-EQUATION APPROXIMATIONS IN HETEROGENEOUS MEDIA [J].
BAMBERGER, A ;
ENGQUIST, B ;
HALPERN, L ;
JOLY, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1988, 48 (01) :129-154
[2]   PARABOLIC WAVE-EQUATION APPROXIMATIONS IN HETEROGENEOUS MEDIA [J].
BAMBERGER, A ;
ENGQUIST, B ;
HALPERN, L ;
JOLY, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1988, 48 (01) :99-128
[3]   POLYNOMIAL INTERPOLATION RESULTS IN SOBOLEV SPACES [J].
BERNARDI, C ;
MADAY, Y .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1992, 43 (1-2) :53-80
[4]  
BERNARDI C, 1949, IN PRESS HDB NUMERIC, V5
[5]  
CANUTO C, 1982, MATH COMPUT, V38, P67, DOI 10.1090/S0025-5718-1982-0637287-3
[6]  
CAZENAVE T, 1990, MATH APPLICATIONS, V1
[7]  
Claerbout J.F., 1976, FUNDAMENTALS GEOPHYS
[8]  
DAUTRAY R, 1988, ANAL MATH CALCUL NUM
[9]  
DEVERONICO MC, 1991, NOVEL NUMERICAL TECH
[10]  
LIONS JL, 1968, PROBLEMES AUX LIMITE, V1