VALIDATION OF A-POSTERIORI ERROR ESTIMATORS BY NUMERICAL APPROACH

被引:189
作者
BABUSKA, I
STROUBOULIS, T
UPADHYAY, CS
GANGARAJ, SK
COPPS, K
机构
[1] UNIV MARYLAND,DEPT MATH,COLL PK,MD 20742
[2] TEXAS A&M UNIV,DEPT AEROSP ENGN,COLLEGE STN,TX 77843
关键词
D O I
10.1002/nme.1620370702
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A numerical methodology which determines the quality (or robustness) of a posteriori error estimators is described. The methodology accounts precisely for the factors which affect the quality of error estimators for finite element solutions of linear elliptic problems, namely, the local geometry of the grid and the structure of the solution. The methodology can be employed to check the robustness of any estimator for the complex grids which are used in engineering computations.
引用
收藏
页码:1073 / 1123
页数:51
相关论文
共 64 条
[1]   A PROCEDURE FOR A POSTERIORI ERROR ESTIMATION FOR H-P FINITE-ELEMENT METHODS [J].
AINSWORTH, M ;
ODEN, JT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1992, 101 (1-3) :73-96
[2]   A UNIFIED APPROACH TO A POSTERIORI ERROR ESTIMATION USING ELEMENT RESIDUAL METHODS [J].
AINSWORTH, M ;
ODEN, JT .
NUMERISCHE MATHEMATIK, 1993, 65 (01) :23-50
[3]   A POSTERIORI ERROR ESTIMATORS FOR 2ND-ORDER ELLIPTIC-SYSTEMS .2. AN OPTIMAL ORDER PROCESS FOR CALCULATING SELF-EQUILIBRATING FLUXES [J].
AINSWORTH, M ;
ODEN, JT .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1993, 26 (09) :75-87
[4]  
AINSWORTH M, IN PRESS J APPL NUME
[5]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[6]   A-POSTERIORI ERROR ESTIMATES FOR FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
RHEINBOLDT, WC .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 12 (10) :1597-1615
[7]   ANALYSIS OF THE EFFICIENCY OF AN A POSTERIORI ERROR ESTIMATOR FOR LINEAR TRIANGULAR FINITE-ELEMENTS [J].
BABUSKA, I ;
DURAN, R ;
RODRIGUEZ, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (04) :947-964
[8]   A POSTERIORI ERROR ANALYSIS OF FINITE-ELEMENT SOLUTIONS FOR ONE-DIMENSIONAL PROBLEMS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1981, 18 (03) :565-589
[9]  
Babuska I., 1992, Finite Elements in Analysis and Design, V11, P285, DOI 10.1016/0168-874X(92)90011-Z
[10]   A FEEDBACK FINITE-ELEMENT METHOD WITH A POSTERIORI ERROR ESTIMATION .1. THE FINITE-ELEMENT METHOD AND SOME BASIC PROPERTIES OF THE A POSTERIORI ERROR ESTIMATOR [J].
BABUSKA, I ;
MILLER, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1987, 61 (01) :1-40