SOLVING THE INVERSE FRACTAL PROBLEM FROM WAVELET ANALYSIS

被引:21
作者
ARNEODO, A [1 ]
BACRY, E [1 ]
MUZY, JF [1 ]
机构
[1] UNIV PARIS 07,UFR MATH,F-75251 PARIS 05,FRANCE
来源
EUROPHYSICS LETTERS | 1994年 / 25卷 / 07期
关键词
D O I
10.1209/0295-5075/25/7/001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report on a wavelet-based technique for solving the inverse fractal problem. We show that one can uncover a dynamical system which leaves invariant a given fractal object from the space scale arrangement of its wavelet transform modulus maxima. Our purpose is illustrated on Bemoulli invariant measures of linear as well as non-linear <<cookie-cutters>>. Application to period-doubling dynamical systems at the onset of chaos is reported.
引用
收藏
页码:479 / 484
页数:6
相关论文
共 32 条
  • [1] WAVELET TRANSFORM OF MULTIFRACTALS
    ARNEODO, A
    GRASSEAU, G
    HOLSCHNEIDER, M
    [J]. PHYSICAL REVIEW LETTERS, 1988, 61 (20) : 2281 - 2284
  • [2] ARNEODO A, 1990, ONDELETTES 1989, P125
  • [3] ARNEODO A, 1988, NONLINEAR DYNAM, P130
  • [4] SINGULARITY SPECTRUM OF FRACTAL SIGNALS FROM WAVELET ANALYSIS - EXACT RESULTS
    BACRY, E
    MUZY, JF
    ARNEODO, A
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1993, 70 (3-4) : 635 - 674
  • [5] BARNSLEY F, 1988, FRACTALS EVERYWHERE
  • [6] ITERATED FUNCTION SYSTEMS AND THE GLOBAL CONSTRUCTION OF FRACTALS
    BARNSLEY, MF
    DEMKO, S
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1985, 399 (1817): : 243 - 275
  • [7] THE DIMENSION SPECTRUM OF SOME DYNAMIC-SYSTEMS
    COLLET, P
    LEBOWITZ, JL
    PORZIO, A
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1987, 47 (5-6) : 609 - 644
  • [8] Collet P., 1980, ITERATED MAPS INTERV
  • [9] Combes Jean Michel, 1989, WAVELETS
  • [10] Coullet P., 1978, J PHYSIQUE, V39, pC5