The effect of an inhibitor of protein kinase, HA1077 [1-(5-isoquinolinesulfonyl)homopiperazine HCl], and its hydroxylated metabolite, HA1100, on the activation of NADPH oxidase in human neutrophils were studied. Cells were preincubated with each drug for 10 min and then activated by treatment with phorbol myristate acetate (PMA) or formylmethionyl leucyl phenylalanine (FMLP). After activation, the rate of superoxide dismutase-inhibitable reduction of cytochrome c was estimated. HA1077 and HA1100 inhibited the PMA-induced production of O2- by neutrophil NADPH oxidase in a concentration-dependent manner (IC50 = 15 and 24 muM, respectively). The sensitivity of the FMLP-induced production of O2- to these drugs was similar. The production of O2- in 1,25-dihydroxyvitamin D3-treated HL-60 cells, which differentiated to macrophage-like cells, was also inhibited by the drugs. The extent of inhibition by HA1077 was almost the same as that by a calmodulin inhibitor (W-7) and by inhibitors of protein kinase (H-7 and H-8). In a cell-free lysate of neutrophils, the NADPH-dependent production of O2- can be induced by sodium dodecyl sulfate (SDS). HA1077 at 100 muM had only a weak inhibitory effect on the cell-free, SDS-induced production of O2-, an indication that HA1077 inhibits the activation of NADPH oxidase, not the actual activity. The effects of H-7 and H-8 were similar to that of HA1077, whereas W-7 inhibited the production of O2- by the cell-free extract of HL-60 cells. This action of HA1077 could explain, in part, its ability to protect neuronal cells from death after ischemia.