BRA AND KET FORMALISM IN EXTENDED HILBERT SPACE

被引:14
作者
PRUGOVECKI, E [1 ]
机构
[1] UNIV TORONTO, DEPT MATH, TORONTO M5S 1A1, ONTARIO, CANADA
关键词
D O I
10.1063/1.1666195
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:1410 / 1422
页数:13
相关论文
共 26 条
[1]  
[Anonymous], 1962, REV ROUMAINE MATH PU
[2]   DIRAC FORMALISM AND SYMMETRY PROBLEMS IN QUANTUM MECHANICS .I. GENERAL DIRAC FORMALISM [J].
ANTOINE, JP .
JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (01) :53-&
[3]  
BABBITT D, 1972, REP MATH PHYS, V3, P1
[4]  
Berezanskii J.M.:., 1968, EXPANSIONS EIGENFUNC
[5]  
BOGOLIUBOV N, 1969, AXIOMATIC APPROACH Q
[6]  
BOHM D, 1967, LECTURES THEORETIC A, V9
[7]  
Dirac P.A.M., 1981, International Series of Monographs on Physics
[8]  
Foias C, 1959, ACTA SCI MATH, V20, P117
[9]  
FOIAS C, 1962, REV MATH PURE APPL, V7, P571
[10]  
Grossmann A., 1966, COMMUN MATH PHYS, V2, P1, DOI DOI 10.1007/BF01773338