THERMOPHILIC BIODEGRADATION OF BTEX BY 2 THERMUS SPECIES

被引:37
作者
CHEN, CI
TAYLOR, RT
机构
[1] Earth Sciences Division, Lawrence Livermore National Laboratory, University of California, Livermore, California
关键词
BIODEGRADATION; AROMATIC HYDROCARBON; BTEX; THERMOPHILE; THERMUS; METABOLISM;
D O I
10.1002/bit.260480609
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Two thermophilic bacteria, Thermus aquaticus ATCC 25104 and Thermus species ATCC 27978, were investigated for their abilities to degrade BTEX (benzene, toluene, ethylbenzene, and xylenes). Thermus aquaticus and the Thermus sp, were grown in a nominal medium at 70 degrees C and 60 degrees C, respectively, and resting cell suspensions were used to study BTEX biodegradation at the same corresponding temperatures. The degradation of BTEX by these cell suspensions was measured in sealed serum bottles against controls that also displayed significant abiotic removals of BTEX under such high-temperature conditions. For T. aquaticus at a suspension density of only 1.3 x 10(7) cells/mL and an aqueous total BTEX concentration of 2.04 mg/L (0.022 mM), benzene, toluene, ethylbenzene, m-xylene, and an unresolved mixture of o-and p-xylenes were biodegraded by 10, 12, 18, 20, and 20%, respectively, after 45 days of incubation at 70 degrees C. For the Thermus sp, at a suspension density of 1.1 x 10(7) cells/mL and an aqueous total BTEX concentration of 6.98 mg/L (0.079 mM), benzene, toluene, ethylbenzene, m-xylene, and the unresolved mixture of o- and p-xylenes were biodegraded by 40, 35, 32, 33, and 33%, respectively, after 45 days of incubation at 60 degrees C. Raising the BTEX concentrations lowered the extents of biodegradation. The biodegradations of both benzene and toluene were enhanced when T. aquaticus and the Thermus sp. were pregrown on catechol and o-cresol, respectively as carbon sources. Use of [U-C-14]benzene and [ring-C-14]toluene verified that a small fraction of these two compounds was metabolized within 7 days to water-soluble products and CO2 by these nongrowing cell suspensions. Our investigation also revealed that the nominal medium can be simplified by eliminating the yeast extract and using a higher tryptone concentration (0.2%) without affecting the growth and BTEX degrading activities of these cells. (C) 1995 John Wiley & Sons, Inc.
引用
收藏
页码:614 / 624
页数:11
相关论文
共 37 条
[1]  
AELION CM, 1989, ENVIRON TOXICOL CHEM, V8, P75, DOI [10.1897/1552-8618(1989)8[75:AOAMCT]2.0.CO
[2]  
2, 10.1002/etc.5620080109]
[3]  
AINES R, 1991, UCRLID109906 LAWR LI
[4]   ISOLATION OF A PSEUDOMONAS-STUTZERI STRAIN THAT DEGRADES ORTHO-XYLENE [J].
BAGGI, G ;
BARBIERI, P ;
GALLI, E ;
TOLLARI, S .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1987, 53 (09) :2129-2132
[5]   MICROBIAL-DEGRADATION OF TOLUENE UNDER SULFATE-REDUCING CONDITIONS AND THE INFLUENCE OF IRON ON THE PROCESS [J].
BELLER, HR ;
GRBICGALIC, D ;
REINHARD, M .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1992, 58 (03) :786-793
[6]   THERMUS AQUATICUS GEN N AND SP N A NONSPORULATING EXTREME THERMOPHILE [J].
BROCK, TD ;
FREEZE, H .
JOURNAL OF BACTERIOLOGY, 1969, 98 (01) :289-&
[7]  
CHEN CI, 1995, 209TH NAT M AM CHEM
[8]   THE GROWTH-BEHAVIOR OF THERMUS-AQUATICUS IN CONTINUOUS CULTIVATION [J].
COMETTA, S ;
SONNLEITNER, B ;
FIECHTER, A .
EUROPEAN JOURNAL OF APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1982, 15 (02) :69-74
[9]   TRANSFORMATION OF MONOAROMATIC HYDROCARBONS TO ORGANIC-ACIDS IN ANOXIC GROUNDWATER ENVIRONMENT [J].
COZZARELLI, IM ;
EGANHOUSE, RP ;
BAEDECKER, MJ .
ENVIRONMENTAL GEOLOGY AND WATER SCIENCES, 1990, 16 (02) :135-141
[10]  
DEAN BJ, 1985, MUTAT RES, V145, P153