EXTREMAL-FUNCTIONS FOR THE TRUDINGER-MOSER INEQUALITY IN 2 DIMENSIONS

被引:239
作者
FLUCHER, M
机构
[1] ETH-Zürich HG G 36.1, Zürich, CH-8092
关键词
D O I
10.1007/BF02566514
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the Trudinger-Moser constant sup {integral-OMEGA exp (4-pi-u2)dx: u is-an-element-of H-0(1,2)(OMEGA), integral-OMEGA \del u\2 dx less-than-or-equal-to 1} is attained on every 2-dimensional domain. For disks this result is due to Carleson Chang. For other domains we derive an isoperimetric inequality which relates the ratio of the supremum of the functional and its maximal limit on concentrating sequences to the corresponding quantity for disks. A conformal rearrangement is introduced to prove this inequality. I would like to thank Jurgen Moser and Michael Struwe for helpful advice and criticism.
引用
收藏
页码:471 / 497
页数:27
相关论文
共 15 条
[1]  
ADIMURTHI, 1990, SUMMARY RESULTS CRIT
[2]  
Adimurthi, 1990, ANN SC NORM SUPER PI, VXVII, P393
[3]   ON A NONLINEAR ELLIPTIC EQUATION INVOLVING THE CRITICAL SOBOLEV EXPONENT - THE EFFECT OF THE TOPOLOGY OF THE DOMAIN [J].
BAHRI, A ;
CORON, JM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (03) :253-294
[4]  
CARLESON L, 1986, B SCI MATH, V110, P113
[5]  
Federer H., 1969, GRUNDLEHREN MATH WIS
[6]  
HAN ZC, 1991, ANN I H POINCARE-AN, V8, P159
[7]  
LIONS PL, 1908, REV MAT IBEROAMERICA
[8]   SHARP FORM OF AN INEQUALITY BY N TRUDINGER [J].
MOSER, J .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1971, 20 (11) :1077-&
[9]  
Pohozaev S. I, 1965, DOKL AKAD NAUK SSSR, V165, P1408
[10]  
Polya G., 1951, ISOPERIMETRIC INEQUA