DETECTION BY SITE-SPECIFIC DISULFIDE DISULFIDE CROSS-LINKING OF A CONFORMATIONAL CHANGE IN BINDING OF ESCHERICHIA-COLI PYRUVATE OXIDASE TO LIPID BILAYERS
Escherichia coli pyruvate oxidase, a peripheral membrane homotetrameric flavoprotein, exposes its C-terminal lipid binding site in the presence of substrate pyruvate and co-factor thiamine pyrophosphate Mg2+ and binds tightly to phospholipid bilayers during catalysis. Using site-specific disulfide cross-linking, we demonstrate that disulfide cross-links are formed between C termini of D560C pyruvate oxidase and that the degree of cross-linking is greatly increased by the presence of substrate and co-factors indicating a conformational change that results in juxtaposition of two subunit C termini. The cross-linked oxidase is enzymatically active and remains able to associate with lipid micelles. These results argue strongly that lipid bilayer binding of pyruvate oxidase involves pairing of the C termini of two subunits.