COARSE-GRAINED EMBEDDINGS OF TIME-SERIES - RANDOM-WALKS, GAUSSIAN RANDOM-PROCESSES, AND DETERMINISTIC CHAOS

被引:104
作者
KAPLAN, DT
GLASS, L
机构
[1] Department of Physiology, McGill University, Montreal, Que. H3G 1Y6
来源
PHYSICA D | 1993年 / 64卷 / 04期
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/0167-2789(93)90054-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new method for studying time series is described based on a statistic indicating the degree to which trajectories passing through a small region of an embedding space are parallel. The method is particularly suited to time series with a significant correlation time. Analytic results are presented for Brownian motion and Gaussian random processes. These are generally different from the results for chaotic systems, allowing a test for deterministic dynamics in a time series. A variety of examples are presented of the application of the method to low- and high-dimensional systems.
引用
收藏
页码:431 / 454
页数:24
相关论文
共 45 条
[1]   POWER SPECTRUM ANALYSIS OF HEART-RATE FLUCTUATION - A QUANTITATIVE PROBE OF BEAT-TO-BEAT CARDIOVASCULAR CONTROL [J].
AKSELROD, S ;
GORDON, D ;
UBEL, FA ;
SHANNON, DC ;
BARGER, AC ;
COHEN, RJ .
SCIENCE, 1981, 213 (4504) :220-222
[2]   SINGULAR-VALUE DECOMPOSITION AND THE GRASSBERGER-PROCACCIA ALGORITHM [J].
ALBANO, AM ;
MUENCH, J ;
SCHWARTZ, C ;
MEES, AI ;
RAPP, PE .
PHYSICAL REVIEW A, 1988, 38 (06) :3017-3026
[3]  
Andrews D. F., 1985, DATA COLLECTION PROB
[4]  
[Anonymous], 1988, DIRECTIONS CHAOS
[5]   LYAPUNOV EXPONENTS FROM OBSERVED TIME-SERIES [J].
BRYANT, P ;
BROWN, R ;
ABARBANEL, HDI .
PHYSICAL REVIEW LETTERS, 1990, 65 (13) :1523-1526
[6]   NONLINEAR PREDICTION OF CHAOTIC TIME-SERIES [J].
CASDAGLI, M .
PHYSICA D, 1989, 35 (03) :335-356
[7]  
Chandrasekhar S., 1943, REV MOD PHYS, V15, P1
[8]   UNIVERSALITY, MULTIPLICITY, AND THE EFFECT OF IRON IMPURITIES IN THE BELOUSOV-ZHABOTINSKII REACTION [J].
COFFMAN, KG ;
MCCORMICK, WD ;
NOSZTICZIUS, Z ;
SIMOYI, RH ;
SWINNEY, HL .
JOURNAL OF CHEMICAL PHYSICS, 1987, 86 (01) :119-129
[9]  
Cvitanovic P., 1989, UNIVERSALITY CHAOS
[10]  
FARMER JD, 1982, PHYSICA D, V4, P366, DOI 10.1016/0167-2789(82)90042-2