STABILIZATION OF PERIOD-DOUBLING BIFURCATIONS AND IMPLICATIONS FOR CONTROL OF CHAOS

被引:100
作者
ABED, EH [1 ]
WANG, HO [1 ]
CHEN, RC [1 ]
机构
[1] UNIV MARYLAND,INST SYST RES,COLL PK,MD 20742
来源
PHYSICA D | 1994年 / 70卷 / 1-2期
基金
美国国家科学基金会;
关键词
D O I
10.1016/0167-2789(94)90062-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The stabilization of period doubling bifurcations for discrete-time nonlinear systems is investigated. It is shown that generically such bifurcations can be stabilized using smooth feedback, even if the linearized system is uncontrollable at criticality. In the course of the analysis, expressions are derived for bifurcation stability coefficients of general n-dimensional systems undergoing period doubling bifurcation. A connection is determined between control of the amplitude of a period doubled orbit and the elimination of a period doubling cascade to chaos. For illustration, the results are applied to the Henon attractor.
引用
收藏
页码:154 / 164
页数:11
相关论文
共 12 条
[1]   LOCAL FEEDBACK STABILIZATION AND BIFURCATION CONTROL .1. HOPF-BIFURCATION [J].
ABED, EH ;
FU, JH .
SYSTEMS & CONTROL LETTERS, 1986, 7 (01) :11-17
[2]   LOCAL FEEDBACK STABILIZATION AND BIFURCATION CONTROL .2. STATIONARY BIFURCATION [J].
ABED, EH ;
FU, JH .
SYSTEMS & CONTROL LETTERS, 1987, 8 (05) :467-473
[3]  
[Anonymous], 1980, LINEAR SYSTEMS
[4]  
Guckenheimer J., 1986, DYNAMICAL SYSTEMS BI
[5]  
HAO BL, 1990, CHAOS, V2
[6]  
IOOSS G., 1990, ELEMENTARY STABILITY
[7]  
LEE HC, 1991, 1991 P AM CONTR C BO, P206
[8]  
NUSSE HE, 1992, HDB JAYS DYNAMICS
[9]   CONTROLLING CHAOS [J].
OTT, E ;
GREBOGI, C ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1990, 64 (11) :1196-1199
[10]   PERIOD DOUBLING WITH HIGHER-ORDER DEGENERACIES [J].
PECKHAM, BB ;
KEVREKIDIS, IG .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1991, 22 (06) :1552-1574