ESTIMATING FUNCTIONS OF PROBABILITY-DISTRIBUTIONS FROM A FINITE-SET OF SAMPLES

被引:115
作者
WOLPERT, DH [1 ]
WOLF, DR [1 ]
机构
[1] LOS ALAMOS NATL LAB, IMAGE ANAL SECT, LOS ALAMOS, NM 87545 USA
来源
PHYSICAL REVIEW E | 1995年 / 52卷 / 06期
关键词
D O I
10.1103/PhysRevE.52.6841
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This paper addresses the problem of estimating a function of a probability distribution from a finite set of samples of that distribution. A Bayesian analysis of this problem is presented, the optimal properties of the Bayes estimators are discussed, and as an example of the formalism, closed form expressions for the Bayes estimators for the moments of the Shannon entropy function are derived. Then numerical results are presented that compare the Bayes estimator to the frequency-counts estimator for the Shannon entropy. We also present the closed form estimators, all derived elsewhere, for the mutual information, chi(2) covariance, and some other statistics.
引用
收藏
页码:6841 / 6854
页数:14
相关论文
共 33 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]  
BASHARIN GP, 1959, THEOR PROBAB APPL, V4, P333
[3]  
Berger J.O., 1985, STAT DECISION THEORY, P74
[4]  
DEGROOT MH, 1986, PROBABILITY STATISTI
[5]  
Eubank S, 1990, 1989 LECT COMPL SYST, V2
[6]   INFORMATION MEASURES - STATISTICAL CONFIDENCE-LIMITS AND INFERENCE [J].
FAGEN, RM .
JOURNAL OF THEORETICAL BIOLOGY, 1978, 73 (01) :61-79
[7]  
Goldstein H., 1980, CLASSICAL MECH, V2nd ed
[8]   FINITE-SAMPLE CORRECTIONS TO ENTROPY AND DIMENSION ESTIMATES [J].
GRASSBERGER, P .
PHYSICS LETTERS A, 1988, 128 (6-7) :369-373
[9]  
HAMMING RW, 1986, CODING INFORMATION T
[10]  
Harris B., 1975, C MATH SOC J BOLYAI, V16, P323