SMALL G-SOLUTION AND LARGE LAMBDA-SOLUTION OF THE SCHRODINGER EQUATION FOR THE INTERACTION LAMBDA-X2-(1+GX2)

被引:45
作者
KAUSHAL, RS
机构
[1] Department of Physics, University of Kaiserslautern
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1979年 / 12卷 / 10期
关键词
D O I
10.1088/0305-4470/12/10/003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using perturbation theory, asymptotic expansions are derived for the eigenenergies and eigenfunctions of the wave equation for the interaction lambda x2/(1+gx2) in the range of small values of g and large values of lambda . The first few energy eigenvalues are calculated and found to be comparable with the non-perturbative results obtained by Mitra (1978).
引用
收藏
页码:L253 / L258
页数:6
相关论文
共 9 条
[1]  
ALY HH, 1975, J MATH PHYS, V16, P96
[2]   EIGENVALUES OF LAMBDA X2M ANHARMONIC OSCILLATORS [J].
BISWAS, SN ;
DATTA, K ;
SAXENA, RP ;
SRIVASTAVA, PK ;
VARMA, VS .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (09) :1190-1195
[3]  
DINGLE RB, 1973, ASYMPTOTIC EXPANSION, P401
[4]  
HAKEN H, 1970, HDB PHYSIK, V25
[5]  
KAUSHAL RS, UNPUBLISHED
[6]   INTERACTION OF TYPE LAMBDAX2-(1+GX2) [J].
MITRA, AK .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (10) :2018-2022
[8]  
MULLERKIRSTEN HJW, UNPUBLISHED
[9]   INFLUENCE OF HIGHER ORDER CONTRIBUTIONS TO CORRELATION FUNCTION OF INTENSITY FLUCTUATION IN A LASER NEAR THRESHOLD [J].
RISKEN, H ;
VOLLMER, HD .
ZEITSCHRIFT FUR PHYSIK, 1967, 201 (03) :323-&