ANALYSIS OF FINITE-ELEMENT METHODS FOR 2ND ORDER BOUNDARY-VALUE-PROBLEMS USING MESH DEPENDENT NORMS

被引:37
作者
BABUSKA, I
OSBORN, J
机构
[1] UNIV MARYLAND,DEPT MATH,COLLEGE PK,MD 20742
[2] UNIV WISCONSIN,MATH RECH CTR,MADISON,WI 53706
关键词
D O I
10.1007/BF01463997
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:41 / 62
页数:22
相关论文
共 13 条
[1]   ERROR-BOUNDS FOR FINITE ELEMENT METHOD [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1971, 16 (04) :322-&
[2]  
Babuska I., 1973, MATH FDN FINITE ELEM, P5
[3]  
BRAMBLE J, 1976, SIAM J NUMER ANAL, V13, P185
[4]  
De Boor C, 1966, THESIS U MICHIGAN
[5]   OPTIMAL-L-INFINITY ERROR ESTIMATES FOR GALERKIN APPROXIMATIONS TO SOLUTIONS OF 2-POINT BOUNDARY-VALUE PROBLEMS [J].
DOUGLAS, J ;
DUPONT, T ;
WAHLBIN, L .
MATHEMATICS OF COMPUTATION, 1975, 29 (130) :475-483
[6]  
EISENSTAT S, 83 YAL U DEP COMP SC
[7]   UNIFORM CONVERGENCE OF GALERKINS METHOD FOR SPLINES ON HIGHLY NONUNIFORM MESHES [J].
NATTERER, F .
MATHEMATICS OF COMPUTATION, 1977, 31 (138) :457-468
[8]  
Necas J., 1967, METHODES DIRECTES TH
[9]   CRITERION FOR QUASI-OPTIMALNESS OF RITZ METHOD [J].
NITSCHE, J .
NUMERISCHE MATHEMATIK, 1968, 11 (04) :346-&
[10]  
NITSCHE JA, 1974, MATH COMPUT, V28, P937, DOI 10.1090/S0025-5718-1974-0373325-9