A STOCHASTIC CELLULAR AUTOMATON MODEL OF NONLINEAR DIFFUSION AND DIFFUSION WITH REACTION

被引:10
作者
BRIEGER, LM
BONOMI, E
机构
[1] Ecole Polytechnique Fédérale de Lausanne
关键词
D O I
10.1016/0021-9991(91)90231-9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This article presents a stochastic cellular automaton model of diffusion and diffusion with reaction. The master equations for the model are examined, and we assess the difference between the implementation in which a single particle at a time moves (asynchronous dynamics) and one implementation in which all particles move simultaneously (synchronous dynamics). Biasing locally each particle's random walk, we alter the diffusion coefficients of the system. By appropriately choosing the biasing function, we can impose a desired non-linear diffusive behaviour in the model. We present an application of this model, adapted to include two diffusing species, two static species, and a chemical reaction in a prototypical simulation of carbonation in concrete. © 1991.
引用
收藏
页码:467 / 486
页数:20
相关论文
共 16 条
[1]  
Bazant ZP, 1971, CEMENT CONCRETE RES, V1, P461, DOI [DOI 10.1016/0008-8846(71)90054-8, 10.1016/0008-8846(71)90054-8]
[2]  
BOGHOSIAN BM, 1987, COMPLEX SYST, V1
[3]   A STOCHASTIC CELLULAR AUTOMATON SIMULATION OF THE NONLINEAR DIFFUSION EQUATION [J].
BRIEGER, L ;
BONOMI, E .
PHYSICA D, 1991, 47 (1-2) :159-168
[4]  
BRIEGER LM, 1991, 6TH P S CONT MOD DIS
[5]  
BRIEGER LM, 1989 P INT C MAT SCI, P635
[6]  
Clouqueur A., 1987, Complex Systems, V1, P585
[7]  
Dullien F. A. L, 1979, POROUS MEDIA, DOI [10.1016/B978-0-12-223650-1.X5001-3, DOI 10.1016/B978-0-12-223650-1.X5001-3]
[8]  
FELLER W, 1964, INTRO PROBABILITY TH
[9]   LATTICE-GAS AUTOMATA FOR THE NAVIER-STOKES EQUATION [J].
FRISCH, U ;
HASSLACHER, B ;
POMEAU, Y .
PHYSICAL REVIEW LETTERS, 1986, 56 (14) :1505-1508
[10]  
KAMP CL, 1987 P IABSE C DELFT, P329