POLYNOMIAL (LINEAR IN PARAMETERS) LEAST-SQUARES ANALYSIS WHEN ALL EXPERIMENTAL-DATA ARE SUBJECT TO RANDOM ERRORS

被引:7
作者
LISY, JM
CHOLVADOVA, A
DROBNA, B
机构
[1] Faculty of Chemical Technology, Slovak Technical University, 812 37 Bratislava
来源
COMPUTERS & CHEMISTRY | 1991年 / 15卷 / 02期
关键词
D O I
10.1016/0097-8485(91)80038-N
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An iterative method for the least squares fitting of experimental data to polynomial (linear in parameters) models without initial parameter guesses and with the true least squares solution, including the variance-covariance matrix, is presented. The algorithm does not require any linerization of model or normal equations and prevents oscillation and divergence in the solutions.
引用
收藏
页码:135 / 141
页数:7
相关论文
共 7 条
[1]   EXCESS VOLUMES OF BINARY-MIXTURES OF 1,1,2,2-TETRACHLOROETHANE WITH NORMAL-ALKANES (C-6-C-9) [J].
CHOUDARY, NV ;
NAIDU, PR .
JOURNAL OF CHEMICAL AND ENGINEERING DATA, 1985, 30 (01) :78-80
[2]  
DEMING WE, 1964, STATISTICAL ADJUSTME
[3]   MULTIPLE STRAIGHT-LINE LEAST-SQUARES ANALYSIS WITH UNCERTAINTIES IN ALL VARIABLES [J].
LISY, JM ;
CHOLVADOVA, A ;
KUTEJ, J .
COMPUTERS & CHEMISTRY, 1990, 14 (03) :189-192
[4]   LEAST-SQUARES ANALYSIS - PROPAGATION OF RANDOM ERRORS AND NEWTON-RAPHSON ITERATIVE FORMULA [J].
LISY, JM ;
CHOLVADOVA, A ;
DROBNA, B .
COMPUTERS & CHEMISTRY, 1991, 15 (02) :127-134
[5]   A BETTER LEAST-SQUARES METHOD WHEN BOTH VARIABLES HAVE UNCERTAINTIES [J].
LYBANON, M .
AMERICAN JOURNAL OF PHYSICS, 1984, 52 (01) :22-26
[6]   RAPIDLY CONVERGENT ITERATIVE METHOD FOR SOLUTION OF GENERALIZED NONLINEAR LEAST-SQUARES PROBLEM [J].
POWELL, DR ;
MACDONALD, JR .
COMPUTER JOURNAL, 1972, 15 (02) :148-+
[7]   FITTING DATA TO NONLINEAR FUNCTIONS WITH UNCERTAINTIES IN ALL MEASUREMENT VARIABLES [J].
SOUTHWELL, WH .
COMPUTER JOURNAL, 1976, 19 (01) :69-73