MODIFIED HEBBIAN LEARNING FOR CURVE AND SURFACE FITTING

被引:165
作者
XU, L
OJA, E
SUEN, CY
机构
[1] CONCORDIA UNIV,CTR PATTERN RECOGNIT & MACHINE INTELLIGENCE,MONTREAL H3G 1M8,QUEBEC,CANADA
[2] LAPPEENRANTA UNIV TECHNOL,DEPT INFORMAT TECHNOL,SF-53851 LAPPEENRANTA 85,FINLAND
关键词
HEBBIAN LEARNING; PRINCIPAL COMPONENT ANALYSIS; MINOR COMPONENTS; CURVE AND SURFACE FITTING; TOTAL LEAST SQUARE METHOD; STOCHASTIC APPROXIMATION;
D O I
10.1016/0893-6080(92)90006-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A linear neural unit with a modified anti-Hebbian learning rule is shown to be able to optimally fit curves, surfaces, and hypersurfaces by adaptively extracting the minor component (i.e., the counterpart of principal component) of the input data set. The learning rule is analyzed mathematically. The results of computer simulations are given to illustrate that this neural fitting method considerably out perform the commonly used least square fitting method in resisting both normal noise and outlier
引用
收藏
页码:441 / 457
页数:17
相关论文
共 24 条
[1]  
[Anonymous], 1978, STOCHASTIC APPROXIMA
[2]  
BALDI P, 1991, BACK PROPAGATION THE
[3]  
BALDI P, 1989, NEURAL NETWORKS, V2, P52
[4]  
CHAUVIN Y, 1989, P IEEE INT C NEURAL, V1, P373
[5]  
FOLDIAK P, 1989, JUN P IJCNN INT JOIN, V1, P401
[6]   LEARNING, INVARIANCE, AND GENERALIZATION IN HIGH-ORDER NEURAL NETWORKS [J].
GILES, CL ;
MAXWELL, T .
APPLIED OPTICS, 1987, 26 (23) :4972-4978
[7]  
Golub G.H., 1983, MATRIX COMPUTATIONS
[8]  
KARHUNEN J, 1982, THESIS HELSINKI U TE
[9]  
Kohonen T., 1988, SELF ORG ASS MEMORY
[10]  
KUNG SY, 1990, 1990 P IEEE ASSP C, P861