PRECISE EXPONENTIAL ESTIMATES IN ADIABATIC THEORY

被引:32
作者
MARTINEZ, A
机构
[1] Département de Mathématiques, Institut Galilée-U.RA. 742 C.N.R.S., Université Paris-Nord, 93430 Villetaneuse, Avenue J. B. Clément
关键词
D O I
10.1063/1.530832
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
General adiabatic evolutions associated to Hamiltonians, which admit a holomorphic extension with respect to the time variable in a complex strip. and whose spectrum satisfies a gap condition are studied. An explicit rate of exponential decay is given, which is related to simple geometric quantities associated to the spectrum of the Hamiltonian. for the transition probability between the two parts of the spectrum when the evolution is taken from -infinity to +infinity.
引用
收藏
页码:3889 / 3915
页数:27
相关论文
共 27 条
[1]  
Agmon S., 1982, MATH NOTES, V29
[2]   ADIABATIC THEOREMS AND APPLICATIONS TO THE QUANTUM HALL-EFFECT (VOL 110, PG 33, 1987) [J].
AVRON, JE ;
SEILER, R ;
YAFFE, LG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 156 (03) :649-650
[3]   ADIABATIC THEOREMS AND APPLICATIONS TO THE QUANTUM HALL-EFFECT [J].
AVRON, JE ;
SEILER, R ;
YAFFE, LG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 110 (01) :33-49
[4]  
BALAZARDKONLEIN A, THESIS U NANTES
[5]   Proof of Adiabatic law [J].
Born, M. ;
Fock, V. .
ZEITSCHRIFT FUR PHYSIK, 1928, 51 (3-4) :165-180
[6]  
DYKHNE AM, 1962, ZH EKSP TEOR FIZ, V14, P941
[7]   GENERALIZED ADIABATIC INVARIANCE [J].
GARRIDO, LM .
JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (03) :355-&
[8]  
GERARD C, 1991, COMMUN MATH PHYS, V142
[9]   MULTIPLE WELLS IN THE SEMI-CLASSICAL LIMIT I [J].
HELFFER, B ;
SJOSTRAND, J .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1984, 9 (04) :337-408
[10]  
Jaksic V., 1992, Reviews in Mathematical Physics, V4, P529, DOI 10.1142/S0129055X92000224