ARBITRARY NONLINEARITY IS SUFFICIENT TO REPRESENT ALL FUNCTIONS BY NEURAL NETWORKS - A THEOREM

被引:97
作者
KREINOVICH, VY
机构
[1] Univ of Texas at El Paso, El Paso, United States
关键词
BACK PROPAGATING NETWORK; MAPPING NETWORKS; UNIVERSAL APPROXIMATION; NETWORK REPRESENTATION CAPABILITY; NONIDEAL NEURONS;
D O I
10.1016/0893-6080(91)90074-F
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
It is proved that if we have neurons implementing arbitrary linear functions and a neuron implementing one (arbitrary but smooth) nonlinear function g(x), then for every continuous function f(x1, ..., x(m)) of arbitrarily many variables and for arbitrary e > 0 we can construct a network that consists of g-neurons and linear neurons and computes f with precision e.
引用
收藏
页码:381 / 383
页数:3
相关论文
共 14 条
[1]  
Hecht-Nielsen R., 1987, IEEE First International Conference on Neural Networks, P19
[2]  
HECHTNIELSEN R, 1988, 1988 INT NEUR NETW S
[3]   MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS [J].
HORNIK, K ;
STINCHCOMBE, M ;
WHITE, H .
NEURAL NETWORKS, 1989, 2 (05) :359-366
[4]  
JUNG WG, 1974, IC OP AMP COOKBOOK
[5]  
KOLMOGOROV AN, 1957, DOKL AKAD NAUK SSSR+, V114, P953
[6]  
KREINOVICH V, 1988, P INT C COMPUTER LOG, P31
[7]  
KREINOVICH V, 1989, CLASSIFICATION TRANS
[8]  
KREINOVICH V, 1986, NOT AM MATH SOC, V33, P945
[9]  
KREINOVICH VY, 1990, LECT NOTES COMPUT SC, V417, P112
[10]   GENERAL-FORM OF MEASUREMENT TRANSFORMATIONS WHICH ADMIT THE COMPUTATIONAL METHODS OF METROLOGICAL ANALYSIS OF MEASURING-TESTING AND MEASURING-COMPUTING SYSTEMS [J].
KROTKOV, IN ;
KREINOVICH, VY ;
MAZIN, VD .
MEASUREMENT TECHNIQUES USSR, 1987, 30 (10) :936-939