DYNAMIC-SYSTEMS WHICH SOLVE OPTIMIZATION PROBLEMS WITH LINEAR CONSTRAINTS

被引:29
作者
FAYBUSOVICH, L [1 ]
机构
[1] UNIV NOTRE DAME,DEPT MATH,NOTRE DAME,IN 46556
基金
美国国家科学基金会;
关键词
D O I
10.1093/imamci/8.2.135
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce and study a class of dynamical systems which evolve in the interior of a given polyhedron and which solve various optimization problems. The relationships with double-bracket equations of Brockett are established.
引用
收藏
页码:135 / 149
页数:15
相关论文
共 10 条
[1]   THE NONLINEAR GEOMETRY OF LINEAR-PROGRAMMING .1. AFFINE AND PROJECTIVE SCALING TRAJECTORIES [J].
BAYER, DA ;
LAGARIAS, JC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 314 (02) :499-526
[2]  
BROCKETT RW, 1988, LIN ALG ITS APPL, V146, P79
[3]  
*COOKE GE, 1967, HOMOLOGY CELL COMPLE
[4]   SIMPLEX-METHOD AND GROUPS GENERATED BY REFLECTIONS [J].
FAYBUSOVICH, L .
ACTA APPLICANDAE MATHEMATICAE, 1990, 20 (03) :231-245
[5]  
FAYBUSOVICH L, 1983, CYBERNETICS+, V19, P247
[6]  
FAYBUSOVICH L, 1991, IN PRESS PHYSICA D
[7]   A NEW POLYNOMIAL-TIME ALGORITHM FOR LINEAR-PROGRAMMING [J].
KARMARKAR, N .
COMBINATORICA, 1984, 4 (04) :373-395
[8]  
MEGGIDO N, 1989, MATH OPER RES, V14, P97
[9]  
SMALE S, 1987, 1986 P INT C MATH BE, P172
[10]  
[No title captured]