ASYMPTOTICS FOR MULTIVARIATE TRIMMING

被引:43
作者
NOLAN, D
机构
[1] University of California at Berkeley, CA
基金
美国国家科学基金会;
关键词
ROBUST ESTIMATION; RANDOM SET; EMPIRICAL PROCESS; WEAK CONVERGENCE; CUBE-ROOT RATE OF CONVERGENCE;
D O I
10.1016/0304-4149(92)90032-L
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
One version of multivariate trimming is the operation that intersects all halfspaces with probability content 1 - alpha or greater. The result is a alpha-trimmed convex set, and this set is stochastic when the empirical distribution of a sample determines the probability content of the halfspaces. In this paper, conditions are found for the weak convergence of the boundary of this set to a Gaussian process. It is also shown that an n1/3 normalization produces a limit distribution for the direction normal to the boundary of the set. Intuitive geometric arguments and empirical process methods are employed to establish both limit results.
引用
收藏
页码:157 / 169
页数:13
相关论文
共 14 条
[1]   RATES OF GROWTH AND SAMPLE MODULI FOR WEIGHTED EMPIRICAL PROCESSES INDEXED BY SETS [J].
ALEXANDER, KS .
PROBABILITY THEORY AND RELATED FIELDS, 1987, 75 (03) :379-423
[2]  
[Anonymous], 1972, ROBUST ESTIMATES LOC
[3]   ORDERING OF MULTIVARIATE DATA [J].
BARNETT, V .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 1976, 139 :318-354
[4]  
CHERNOFF H, 1964, ANN I STAT MATH, V146, P31
[5]  
Donoho D.L., 1982, BREAKDOWN PROPERTIES
[6]  
DONOHO DL, 1987, 133 U CAL DEP STAT T
[7]  
HAMPEL FR, 1986, ROBUST STATISTICS AP
[8]   CUBE ROOT ASYMPTOTICS [J].
KIM, JY ;
POLLARD, D .
ANNALS OF STATISTICS, 1990, 18 (01) :191-219
[9]  
Marcus MB., 1981, RANDOM FOURIER SERIE
[10]  
NATH GB, 1971, APPL STAT, V20, P313