Vascular smooth muscle cells (VSMCs) proliferate in response to arterial injury. Recent findings suggest that, in addition to platelet-derived growth factors, growth factors from inflammatory cells and endothelial cells at the site of injury may contribute to VSMC proliferation. We hypothesized that a common mechanism by which endothelial cells and inflammatory cells stimulate VSMC growth could be the active oxygen species (i.e., O2-, H2O2, and .OH) generated during arterial injury. Using xanthine/xanthine oxidase to generate active oxygen species, we studied the effects of these agents on VSMC growth. Xanthine/xanthine oxidase (100-mu-M xanthine and 5 microunits/ml xanthine oxidase) stimulated DNA synthesis in growth-arrested VSMCs by 180% over untreated cells. Administration of the scavenging enzymes superoxide dismutase and catalase demonstrated that H2O2 was primarily responsible for xanthine/xanthine oxidase-induced VSMC DNA synthesis. H2O2 directly increased VSMC DNA synthesis and cell number (maximal at 200-mu-M) but decreased DNA synthesis of endothelial cells and fibroblasts. This effect was protein kinase C independent: sphingosine, a potent protein kinase C inhibitor, failed to block H2O2-induced VSMC DNA synthesis. H2O2 (200-mu-M) stimulated c-myc and c-fos mRNA levels by fourfold and 20-fold, respectively, as compared with quiescent levels. In contrast to DNA synthesis, H2O2 induction of c-myc and c-fos mRNA was primarily protein kinase C dependent. These findings show that H2O2 Specifically increases VSMC DNA synthesis and suggest a role for this oxidant in intimal proliferation, especially after arterial injury.