FINITE DIMENSIONAL CONE ITERATION TECHNIQUES FOR SUPERLINEAR HAMMERSTEIN EQUATIONS

被引:4
作者
SPREKELS, J
机构
[1] Institut fur Angewandte Mathematik Universitat Hamburg, Bundesstrasse 55, D 2000
关键词
D O I
10.1080/01630567908816018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Finite dimensional iteration schemes are constructed which yield pointwise inclusions for unstable solutions of superlinear Hammerstein equations. The basic idea is to combine the method of cone iteration with a certain discretization technique. The method's high degree of accuracy is demonstrated by means of numerical examples. © 1979, Taylor & Francis Group, LLC. All rights reserved.
引用
收藏
页码:289 / 314
页数:26
相关论文
共 17 条
[1]   FIXED-POINT EQUATIONS AND NONLINEAR EIGENVALUE PROBLEMS IN ORDERED BANACH-SPACES [J].
AMANN, H .
SIAM REVIEW, 1976, 18 (04) :620-709
[2]  
ELENSKIJ JN, 1969, PERM GOS U UCEN ZAP, V218, P114
[3]  
GRIGORIEFF RD, 1972, Z ANGEW MATH MECH, V52, pT204
[4]   NONZERO SOLUTIONS OF BOUNDARY-VALUE PROBLEMS FOR SECOND-ORDER ORDINARY AND DELAY-DIFFERENTIAL EQUATIONS [J].
GUSTAFSON, GB ;
SCHMITT, K .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1972, 12 (01) :129-+
[5]  
HOFMANN W, 1976, ISNM, V31, P79
[6]  
Krasnoselskii M.A., 1964, POSITIVE SOLUTIONS O
[8]  
MULLER PH, 1960, Z ANG MA ME, V40, P136
[9]   POSITIVE SOLUTIONS OF NONLINEAR ELLIPTIC BOUNDARY-VALUE PROBLEMS [J].
NUSSBAUM, R .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1975, 51 (02) :461-482
[10]  
PRANDTL L, 1899, THESIS MUNCHEN