GLOBAL OPTIMIZATION METHODS FOR COMPUTATIONAL ELECTROMAGNETICS

被引:41
作者
GOTTVALD, A
PREIS, K
MAGELE, C
BIRO, O
SAVINI, A
机构
[1] GRAZ TECH UNIV, DEPT FUNDAMENTALS & THEORY ELECT ENGN, A-8010 GRAZ, AUSTRIA
[2] UNIV PAVIA, DEPT ELECT ENGN, I-27100 PAVIA, ITALY
关键词
D O I
10.1109/20.123990
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Both higher-order (pseudo) deterministic and zeroth-order probabilistic optimization methods have been analyzed and tested for solving the global optimization problems arising in computational electromagnetics. Previously recommended, but seemingly idependent schemes (Evolution Strategies, Simulated Annealing, Monte-Carlo Iteration) have been unified into a robust general method: Global Evolution Strategy (GES). Regularization techniques, stability of solutions and nonlinear phenomena are shown to be closely related topics to global optimization & inverse problems. Speed of convergence is evaluated for different optimization methods. A real-world application (from NMR & MRI) demonstrate the favourable behaviour of GES in the context of Finite Element Method.
引用
收藏
页码:1537 / 1540
页数:4
相关论文
共 15 条
[1]  
[Anonymous], 1980, PRACTICAL METHODS OP
[2]  
CHICHINADZE VK, 1983, SOLVING NONCONVEX NO
[3]  
DIXON LCW, 1978, DESIGN OPTIMIZATION
[4]  
Fletcher R., 1981, PRACTICAL METHODS OP
[5]   COMPARATIVE-ANALYSIS OF OPTIMIZATION METHODS FOR MAGNETOSTATICS [J].
GOTTVALD, A .
IEEE TRANSACTIONS ON MAGNETICS, 1988, 24 (01) :411-414
[6]   OPTIMAL MAGNET DESIGN FOR NMR [J].
GOTTVALD, A .
IEEE TRANSACTIONS ON MAGNETICS, 1990, 26 (02) :399-401
[7]  
GOTTVALD A, 1990, P IGTE S GRAZ, P23
[8]  
GUARNIERI M, 1990, IEEE T MAGN, V26, P622, DOI 10.1109/20.106394
[9]  
Loney S.T., 1966, J I MATH APPL, V2, P111
[10]  
PREIS K, 1990, COMPEL, V9, P119