ANALYSIS, APPROXIMATION, AND COMPUTATION OF A COUPLED SOLID FLUID TEMPERATURE CONTROL PROBLEM

被引:45
作者
GUNZBURGER, MD [1 ]
LEE, HC [1 ]
机构
[1] VIRGINIA TECH,DEPT MATH,BLACKSBURG,VA 24061
关键词
D O I
10.1016/0045-7825(94)00022-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An optimization problem is formulated motivated by the desire to remove temperature peaks, i.e., ''hot spots'', along the bounding surfaces of containers of fluid flows. The heat equation of the solid container is coupled to the energy equation for the fluid. Heat sources can be located on the solid body, the fluid, or both. Control is effected by adjustments to the temperature of the fluid at the inflow boundary. Both mathematical analyses and computational experiments are given.
引用
收藏
页码:133 / 152
页数:20
相关论文
共 16 条
[1]  
ABERGEL F, 1990, THEOR COMP FLUID DYN, P303
[2]  
Adams RA., 2003, PURE APPL MATH SOB O, V2
[3]  
Alekseev V.M., 1987, OPTIMAL CONTROL
[4]  
[Anonymous], 1971, OPTIMAL CONTROL SYST
[5]   FINITE-ELEMENT METHOD WITH LAGRANGIAN MULTIPLIERS [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1973, 20 (03) :179-192
[6]  
BABUSKA I, 1973, MATH FDN FINITE ELEM, P3
[7]   FINITE DIMENSIONAL APPROXIMATION OF NON-LINEAR PROBLEMS .1. BRANCHES OF NONSINGULAR SOLUTIONS [J].
BREZZI, F ;
RAPPAZ, J ;
RAVIART, PA .
NUMERISCHE MATHEMATIK, 1980, 36 (01) :1-25
[8]  
CIARLET P., 1989, INTRO NUMERICAL LINE
[9]  
Ciarlet P. G., 2002, FINITE ELEMENT METHO
[10]  
CROUZIEX M, 1989, NUMERICAL APPROXIMAT