ON A SUBCLASS OF INCE EQUATIONS

被引:4
作者
ATHORNE, C
机构
[1] Dept. of Math., Glasgow Univ.
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1990年 / 23卷 / 04期
关键词
D O I
10.1088/0305-4470/23/4/002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The author presents a two-parameter family of Ince equations for which the problem of the periodicity of the general integral is reducible entirely to the solution of a quadratic equation.
引用
收藏
页码:L137 / L139
页数:3
相关论文
共 11 条
[1]  
Arscott F. M., 1964, PERIODIC DIFFERENTIA
[2]  
ATHORNE C, IN PRESS PHYS LETT A
[3]  
ATHORNE C, 1989, STABILITY PERIODICIT
[4]   AN APPLICATION OF RAY-REID INVARIANTS [J].
LUTZKY, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (06) :1370-1371
[5]  
Magnus W., 1979, HILLS EQUATION
[6]   THE NONLINEAR DIFFERENTIAL EQUATION Y''+P(X)Y+CY-3=0 [J].
PINNEY, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 1 (05) :681-681
[7]   NON-LINEAR SUPERPOSITION LAW FOR GENERALIZED ERMAKOV SYSTEMS [J].
RAY, JR .
PHYSICS LETTERS A, 1980, 78 (01) :4-6
[8]   MORE EXACT INVARIANTS FOR THE TIME-DEPENDENT HARMONIC-OSCILLATOR [J].
RAY, JR ;
REID, JL .
PHYSICS LETTERS A, 1979, 71 (04) :317-318
[9]   ERMAKOV SYSTEMS, NON-LINEAR SUPERPOSITION, AND SOLUTIONS OF NON-LINEAR EQUATIONS OF MOTION [J].
REID, JL ;
RAY, JR .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (07) :1583-1587
[10]  
ROGERS C, 1989, RES REPORT U TECHNOL